------------------------------------------------------------------------------ E04ST, Interior point method for large-scale nonlinear optimization problems ------------------------------------------------------------------------------ Begin of Options Print File = 50 * U Print Level = 2 * U Monitoring File = 51 * U Monitoring Level = 5 * U Infinite Bound Size = 1.00000E+20 * d Task = Minimize * d Stats Time = No * d Time Limit = 6.00000E+01 * U Verify Derivatives = No * d Hessian Mode = Auto * d Matrix Ordering = Auto * d Outer Iteration Limit = 26 * U Stop Tolerance 1 = 2.50000E-08 * U End of Options ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** This version is built and supported by Numerical Algorithms Group (NAG) Ltd. For support email support@nag.co.uk ****************************************************************************** This is Ipopt version 3.12.4, running with linear solver ma97. Number of nonzeros in equality constraint Jacobian...: 4 Number of nonzeros in inequality constraint Jacobian.: 8 Number of nonzeros in Lagrangian Hessian.............: 10 Total number of variables............................: 4 variables with only lower bounds: 4 variables with lower and upper bounds: 0 variables with only upper bounds: 0 Total number of equality constraints.................: 1 Total number of inequality constraints...............: 2 inequality constraints with only lower bounds: 2 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 1.3080000e+02 3.00e+00 5.90e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 1 7.8782624e+01 9.98e-01 2.36e-01 -1.0 4.00e+01 - 9.67e-01 6.67e-01f 1 2 3.6879120e+01 0.00e+00 1.51e+00 -1.0 4.87e+01 - 5.06e-01 1.00e+00f 1 3 2.9955743e+01 0.00e+00 7.36e-02 -1.0 1.38e+01 - 1.00e+00 9.87e-01f 1 4 2.9945313e+01 0.00e+00 3.98e-05 -1.7 8.36e-02 - 1.00e+00 1.00e+00h 1 5 2.9895752e+01 1.81e-04 1.15e-02 -3.8 5.43e-02 - 9.54e-01 9.93e-01f 1 6 2.9894810e+01 0.00e+00 9.79e-07 -3.8 2.48e-03 - 1.00e+00 1.00e+00h 1 7 2.9894383e+01 0.00e+00 3.63e-08 -5.7 5.21e-04 - 1.00e+00 1.00e+00h 1 8 2.9894378e+01 0.00e+00 6.72e-12 -8.6 7.11e-06 - 1.00e+00 1.00e+00h 1 Number of Iterations....: 8 (scaled) (unscaled) Objective...............: 2.9894378048973934e+01 2.9894378048973934e+01 Dual infeasibility......: 6.7175978109862574e-12 6.7175978109862574e-12 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.5601472143227907e-09 2.5601472143227907e-09 Overall NLP error.......: 2.5601472143227907e-09 2.5601472143227907e-09 Number of objective function evaluations = 9 Number of objective gradient evaluations = 9 Number of equality constraint evaluations = 9 Number of inequality constraint evaluations = 9 Number of equality constraint Jacobian evaluations = 9 Number of inequality constraint Jacobian evaluations = 9 Number of Lagrangian Hessian evaluations = 8 Total CPU secs in IPOPT (w/o function evaluations) = 0.018 Total CPU secs in NLP function evaluations = 0.000 EXIT: Optimal Solution Found.