nag::ad::e04ur Tangent Over Adjoint Example Program Results *** e04us Parameters ---------- Linear constraints..... 1 Variables.............. 2 Nonlinear constraints.. 1 Subfunctions........... 44 Infinite bound size.... 1.00E+20 COLD start............. Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16 Step limit............. 2.00E+00 Hessian................ NO Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02 Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12 Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15 Derivative level....... 3 Monitoring file........ -1 Verify level........... 0 Major iterations limit. 50 Major print level...... 10 Minor iterations limit. 50 Minor print level...... 0 J'J initial Hessian.... Reset frequency........ 2 Workspace provided is IWORK( 9), WORK( 306). To solve problem we need IWORK( 9), WORK( 306). Verification of the constraint gradients. ----------------------------------------- The constraint Jacobian seems to be ok. The largest relative error was 1.89E-08 in constraint 1 Verification of the objective gradients. ---------------------------------------- The objective Jacobian seems to be ok. The largest relative error was 1.04E-08 in subfunction 3 Maj Mnr Step Merit Function Norm Gz Violtn Cond Hz 0 2 0.0E+00 2.224070E-02 8.5E-02 3.6E-02 1.0E+00 1 1 1.0E+00 1.455402E-02 1.5E-03 9.8E-03 1.0E+00 2 1 1.0E+00 1.436491E-02 4.9E-03 7.2E-04 1.0E+00 3 1 1.0E+00 1.427013E-02 2.9E-03 9.2E-06 1.0E+00 4 1 1.0E+00 1.422989E-02 1.6E-04 3.6E-05 1.0E+00 5 1 1.0E+00 1.422983E-02 5.4E-07 6.4E-08 1.0E+00 6 1 1.0E+00 1.422983E-02 3.4E-09 9.8E-13 1.0E+00 Exit from NP problem after 6 major iterations, 8 minor iterations. Varbl State Value Lower Bound Upper Bound Lagr Mult Slack V 1 FR 0.419953 0.400000 None . 1.9953E-02 V 2 FR 1.28485 -4.00000 None . 5.285 L Con State Value Lower Bound Upper Bound Lagr Mult Slack L 1 FR 1.70480 1.00000 None . 0.7048 N Con State Value Lower Bound Upper Bound Lagr Mult Slack N 1 LL -9.767742E-13 . None 3.3358E-02 -9.7677E-13 Exit e04us - Optimal solution found. Final objective value = 0.1422983E-01 Derivatives calculated: First order tangent over adjoints Computational mode : algorithmic Solution: x = [4.199526524076e-01, 1.284845223872e+00] Sum of all Hessian entries: sum_ijk [d2x/druser2]_ijk = -3.252797582365e-02