E04UHF Example Program Results Calls to e04uj --------------- Verify Level = -1 Major Iteration Limit = 25 Infinite Bound Size = 1.0D+25 OPTIONS file ------------ Begin * Example options file for E04UHF Check Frequency = 25 * (Default = 60 ) Crash Tolerance = 0.05 * (Default = 0.1) End *** e04ug Parameters ---------- Frequencies. Check frequency......... 25 Expand frequency....... 10000 Factorization frequency. 100 QP subproblems. Scale tolerance......... 9.00E-01 Minor feasibility tol.. 1.05E-08 Scale option............ 2 Minor optimality tol... 1.05E-08 Partial price........... 10 Crash tolerance........ 5.00E-02 Pivot tolerance......... 2.04E-11 Minor print level...... 0 Crash option............ 3 Elastic weight......... 1.00E+00 The SQP method. Minimize................ Nonlinear objective vars 5 Major optimality tol... 1.05E-08 Function precision...... 1.72E-13 Unbounded step size.... 1.00E+20 Superbasics limit....... 5 Forward difference int. 4.15E-07 Unbounded objective..... 1.00E+15 Central difference int. 5.56E-05 Major step limit........ 2.00E+00 Derivative linesearch.. Derivative level........ 3 Major iteration limit.. 25 Linesearch tolerance.... 9.00E-01 Verify level........... -1 Minor iteration limit... 500 Major print level...... 10 Infinite bound size..... 1.00E+25 Iteration limit........ 10000 Hessian approximation. Hessian full memory..... Hessian updates........ 99999999 Hessian frequency....... 99999999 Nonlinear constraints. Nonlinear constraints... 0 Nonlinear Jacobian vars 0 Miscellaneous. Variables............... 5 Linear constraints..... 1 Nonlinear variables..... 5 Linear variables....... 0 LU factor tolerance..... 1.00E+02 LU singularity tol..... 2.04E-11 LU update tolerance..... 1.00E+01 LU density tolerance... 6.00E-01 eps (machine precision). 1.11E-16 Monitoring file........ -1 COLD start.............. Infeasible exit........ Workspace provided is IZ( 1132), Z( 1340). To start solving the problem we need IZ( 566), Z( 670). Itn 0 -- Partial price reduced from 10 to 1. Itn 0 -- Feasible linear rows. Itn 0 -- Norm(x-x0) minimized. Sum of infeasibilities = 0.00E+00. objfun sets 5 out of 5 objective gradients. Maj Mnr Step Objective Optimal Cond Hz PD 0 3 0.0E+00 1.866667E+00 3.3E-02 1.0E+00 TF R 1 2 1.5E+01 1.550000E+00 7.5E-02 1.0E+00 TF n 2 2 6.7E+00 1.200000E+00 1.0E-01 1.0E+00 TF n 3 1 5.0E+00 1.000000E+00 0.0E+00 1.0E+00 TT n Exit from NP problem after 3 major iterations, 8 minor iterations. Variable State Value Lower Bound Upper Bound Lagr Mult Residual Varble 1 UL 1.00000 . 1.0000 -1.000 . Varble 2 UL 2.00000 . 2.0000 -0.5000 . Varble 3 UL 3.00000 . 3.0000 -0.3333 . Varble 4 UL 4.00000 . 4.0000 -0.2500 . Varble 5 UL 5.00000 . 5.0000 -0.2000 . Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual DummyRow BS 0.00000 None None -1.000 . Exit e04ug - Optimal solution found. Final objective value = 1.000000