E04NE_A1W_F Example Program Results *** e04nc Parameters ---------- Problem type........... LS1 Hessian................ NO Linear constraints..... 3 Feasibility tolerance.. 1.05E-08 Variables.............. 9 Crash tolerance........ 1.00E-02 Objective matrix rows.. 10 Rank tolerance......... 1.11E-14 Infinite bound size.... 1.00E+20 COLD start............. Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16 Print level............ 1 Feasibility phase itns. 60 Monitoring file........ -1 Optimality phase itns. 60 Workspace provided is IWORK( 9), WORK( 261). To solve problem we need IWORK( 9), WORK( 261). Rank of the objective function data matrix = 6 Exit from LS problem after 13 iterations. Varbl State Value Lower Bound Upper Bound Lagr Mult Slack V 1 LL 0.00000 . 2.00000 0.1572 . V 2 FR 4.152607E-02 . 2.00000 . 4.1526E-02 V 3 FR 0.587176 None 2.00000 . 1.413 V 4 LL 0.00000 . 2.00000 0.8782 . V 5 FR 9.964323E-02 . 2.00000 . 9.9643E-02 V 6 LL 0.00000 . 2.00000 0.1473 . V 7 FR 4.905781E-02 . 2.00000 . 4.9058E-02 V 8 LL 0.00000 . 2.00000 0.8603 . V 9 FR 0.305649 . 2.00000 . 0.3056 L Con State Value Lower Bound Upper Bound Lagr Mult Slack L 1 LL 2.00000 2.00000 None 0.3777 -4.4409E-16 L 2 UL 2.00000 None 2.00000 -5.7914E-02 . L 3 LL 1.00000 1.00000 4.00000 0.1075 . Exit e04nc - Optimal LS solution. Final LS objective value = 0.8134082E-01 Derivatives calculated: First order adjoints Computational mode : algorithmic dobj/db 1 1 -0.0831 2 0.1320 3 0.0633 4 -0.0831 5 -0.0831 6 -0.0099 7 0.0166 8 -0.0831 9 -0.1562 10 -0.2981 dobj/dbl 1 1 1.5715E-01 2 0.0000E+00 3 0.0000E+00 4 8.7817E-01 5 0.0000E+00 6 1.4728E-01 7 -3.5101E-16 8 8.6026E-01 9 0.0000E+00 10 3.7775E-01 11 0.0000E+00 12 1.0753E-01 dobj/dbu 1 1 0.0000 2 0.0000 3 0.0000 4 0.0000 5 0.0000 6 0.0000 7 0.0000 8 0.0000 9 0.0000 10 0.0000 11 -0.0579 12 0.0000