/* nag_inteq_abel2_weak (d05bdc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.5, 2022.
*/
#include <math.h>
#include <nag.h>
#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL ck1(double t, Nag_Comm *comm);
static double NAG_CALL cf1(double t, Nag_Comm *comm);
static double NAG_CALL cg1(double s, double y, Nag_Comm *comm);
static double NAG_CALL ck2(double t, Nag_Comm *comm);
static double NAG_CALL cf2(double t, Nag_Comm *comm);
static double NAG_CALL cg2(double s, double y, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
int main(void) {
/* Scalars */
double h, t, tlim, tolnl;
Integer exit_status = 0;
Integer iorder = 4;
Integer exno, i, iskip, nmesh, lrwsav;
/* Arrays */
static double ruser[6] = {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0};
double *rwsav = 0, *yn = 0;
/* NAG types */
Nag_Comm comm;
NagError fail;
Nag_WeightMode wtmode;
INIT_FAIL(fail);
printf("nag_inteq_abel2_weak (d05bdc) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
nmesh = pow(2, 6) + 7;
lrwsav = (2 * iorder + 6) * nmesh + 8 * pow(iorder, 2) - 16 * iorder + 1;
if (!(yn = NAG_ALLOC(nmesh, double)) ||
!(rwsav = NAG_ALLOC(lrwsav, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tolnl = sqrt(nag_machine_precision);
for (exno = 1; exno <= 2; exno++) {
printf("\nExample %" NAG_IFMT "\n\n", exno);
if (exno == 1) {
tlim = 7.0;
iskip = 5;
h = tlim / (double)(nmesh - 1);
wtmode = Nag_InitWeights;
/*
nag_inteq_abel2_weak (d05bdc).
Nonlinear convolution Volterra-Abel equation, second kind,
weakly singular.
*/
nag_inteq_abel2_weak(ck1, cf1, cg1, wtmode, iorder, tlim, tolnl, nmesh,
yn, rwsav, lrwsav, &comm, &fail);
} else {
tlim = 5.0;
iskip = 7;
h = tlim / (double)(nmesh - 1);
wtmode = Nag_ReuseWeights;
/* nag_inteq_abel2_weak (d05bdc) as above. */
nag_inteq_abel2_weak(ck2, cf2, cg2, wtmode, iorder, tlim, tolnl, nmesh,
yn, rwsav, lrwsav, &comm, &fail);
}
if (fail.code != NE_NOERROR) {
printf("Error from nag_inteq_abel2_weak (d05bdc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("The stepsize h = %8.4f\n\n", h);
printf(" t Approximate\n");
printf(" Solution\n\n");
for (i = 0; i < nmesh; i++) {
t = (double)(i)*h;
if (i % iskip == 0)
printf("%8.4f%15.4f\n", t, yn[i]);
}
}
END:
NAG_FREE(rwsav);
NAG_FREE(yn);
return exit_status;
}
static double NAG_CALL ck1(double t, Nag_Comm *comm) {
if (comm->user[0] == -1.0) {
printf("(User-supplied callback ck1, first invocation.)\n");
comm->user[0] = 0.0;
}
return -sqrt(nag_math_pi);
}
static double NAG_CALL cf1(double t, Nag_Comm *comm) {
if (comm->user[1] == -1.0) {
printf("(User-supplied callback cf1, first invocation.)\n");
comm->user[1] = 0.0;
}
return sqrt(t) + (3.0 / 8.0) * nag_math_pi * pow(t, 2);
}
static double NAG_CALL cg1(double s, double y, Nag_Comm *comm) {
if (comm->user[2] == -1.0) {
printf("(User-supplied callback cg1, first invocation.)\n");
comm->user[2] = 0.0;
}
return pow(y, 3);
}
static double NAG_CALL ck2(double t, Nag_Comm *comm) {
if (comm->user[3] == -1.0) {
printf("(User-supplied callback ck2, first invocation.)\n");
comm->user[3] = 0.0;
}
return -sqrt(nag_math_pi);
}
static double NAG_CALL cf2(double t, Nag_Comm *comm) {
if (comm->user[4] == -1.0) {
printf("(User-supplied callback cf2, first invocation.)\n");
comm->user[4] = 0.0;
}
return (3.0 - t) * sqrt(t);
}
static double NAG_CALL cg2(double s, double y, Nag_Comm *comm) {
if (comm->user[5] == -1.0) {
printf("(User-supplied callback cg2, first invocation.)\n");
comm->user[5] = 0.0;
}
return exp(s * pow(1.0 - s, 2) - pow(y, 2));
}