NAG Library Manual, Mark 28.5
```/* D01BD_T1W_F C++ Header Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
* Mark 28.5, 2022.
*/

#include <dco.hpp>
#include <iostream>
#include <math.h>
#include <nag.h>
#include <nagx01.h>
#include <stdio.h>
using namespace std;

int main()
{
// Scalars
int exit_status = 0;

cout << "D01BD_T1W_F C++ Header Example Program Results\n\n";

// Skip first line of data file
string mystr;
getline(cin, mystr);

double ar, br, epsabsr, epsrelr;
cin >> ar;
cin >> br;
cin >> epsabsr;
cin >> epsrelr;

a      = ar;
b      = br;
epsabs = epsabsr;
epsrel = epsrelr;

// Create AD configuration data object
Integer           ifail = 0;

Integer           iuser[1];

ruser[0] = 10.0;
iuser[0] = 0;

{
// dco/c++ used here to perform AD of the following
double            pi = X01AAC;
x2  = x * x;
prx = pi * ruser[0];
prx = prx * x;
s   = sin(prx);
ret = x2 * s;
iuser[0]++;
};

// Increment variables to differentiate w.r.t.
double inc                = 1.0;
dco::derivative(ruser[0]) = inc;

ifail = 0;

// Print inputs and primal outputs.
cout << "\n lower limit of integration (a) = " << ar << endl;
cout << " upper limit of integration (b) = " << br << endl;
cout << " absolute accuracy requested    = " << epsabsr << endl;
cout << " relative accuracy requested    = " << epsrelr << endl;
cout.setf(ios::scientific, ios::floatfield);
cout.precision(4);
if (ifail >= 0)
{
cout << "\n approximation to the integral  : " << dco::value(result)
<< endl;
cout << " estimate of the absolute error : " << dco::value(abserr) << endl;
cout << " number of function evaluations : " << iuser[0] << endl;
}

cout << "\n Derivatives calculated: First order tangents\n";
cout << " Computational mode    : algorithmic\n";

// Get derivatives
double dr = dco::derivative(result);

cout << "\n Derivative of solution w.r.t to ruser[0]:\n";
cout << " d/dr(x) = " << dr << endl;

return exit_status;
}
```