/* nag_lapackeig_zgeqlf (f08csc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.4, 2022.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
Integer i, j, m, n, nrhs, pda, pdb;
Integer exit_status = 0;
/* Arrays */
Complex *a = 0, *b = 0, *tau = 0;
double *rnorm = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_lapackeig_zgeqlf (f08csc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;
#else
pda = n;
pdb = nrhs;
#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) || !(b = NAG_ALLOC(m * nrhs, Complex)) ||
!(tau = NAG_ALLOC(n, Complex)) || !(rnorm = NAG_ALLOC(nrhs, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A and B from data file */
for (i = 1; i <= m; ++i)
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n]");
for (i = 1; i <= m; ++i)
for (j = 1; j <= nrhs; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n]");
/* nag_lapackeig_zgeqlf (f08csc).
* Compute the QL factorization of A.
*/
nag_lapackeig_zgeqlf(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapackeig_zgeqlf (f08csc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_lapackeig_zunmql (f08cuc).
* Compute C = (C1) = (Q^H)*B, storing the result in B.
* (C2)
*/
nag_lapackeig_zunmql(order, Nag_LeftSide, Nag_ConjTrans, m, nrhs, n, a, pda,
tau, b, pdb, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapackeig_zunmql (f08cuc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_lapacklin_ztrtrs (f07tsc).
* Compute least squares solutions by back-substitution in
* L*X = C2.
*/
nag_lapacklin_ztrtrs(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs,
&A(m - n + 1, 1), pda, &B(m - n + 1, 1), pdb, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapacklin_ztrtrs (f07tsc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_file_print_matrix_complex_gen_comp (x04dbc).
* Print least squares solution(s).
*/
fflush(stdout);
nag_file_print_matrix_complex_gen_comp(
order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, &B(m - n + 1, 1), pdb,
Nag_BracketForm, "%7.4f", "Least squares solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* nag_blast_zge_norm (f16uac).
* Compute and print estimates of the square roots of the residual
* sums of squares.
*/
for (j = 1; j <= nrhs; ++j) {
nag_blast_zge_norm(order, Nag_FrobeniusNorm, m - n, 1, &B(1, j), pdb,
&rnorm[j - 1], &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_blast_zge_norm (f16uac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
}
printf("\nSquare root(s) of the residual sum(s) of squares\n");
for (j = 0; j < nrhs; ++j)
printf("%11.2e%s", rnorm[j],
(j + 1) % 7 == 0 || j == nrhs - 1 ? "\n" : " ");
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(tau);
NAG_FREE(rnorm);
return exit_status;
}
#undef A
#undef B