/* nag_fit_dim1_cheb_eval (e02aec) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.4, 2022.
*
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
Integer exit_status = 0, i, m, n, r;
NagError fail;
double *a = 0, p, xcap;
INIT_FAIL(fail);
printf("nag_fit_dim1_cheb_eval (e02aec) Example Program Results \n");
/* Skip heading in data file */
scanf("%*[^\n]");
while ((scanf("%" NAG_IFMT "", &m) != EOF))
{
if (m > 0) {
scanf("%" NAG_IFMT "", &n);
if (n >= 0) {
if (!(a = NAG_ALLOC(n + 1, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
} else {
printf("Invalid n.\n");
exit_status = 1;
return exit_status;
}
for (i = 0; i < n + 1; ++i)
scanf("%lf", &a[i]);
printf("\n R Argument Value of polynomial \n");
for (r = 1; r <= m; ++r) {
xcap = (double)(2 * r - m - 1) / (double)(m - 1);
/* nag_fit_dim1_cheb_eval (e02aec).
* Evaluates the coefficients of a Chebyshev series
* polynomial
*/
nag_fit_dim1_cheb_eval(n + 1, a, xcap, &p, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_fit_dim1_cheb_eval (e02aec).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf(" %3" NAG_IFMT "%14.4f %14.4f\n", r, xcap, p);
}
}
END:
NAG_FREE(a);
}
return exit_status;
}