Program e02adfe
! E02ADF Example Program Text
! Mark 28.4 Release. NAG Copyright 2022.
! .. Use Statements ..
Use nag_library, Only: e02adf, e02aef, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: fit, x1, xarg, xcapr, xm
Integer :: i, ifail, iwght, j, k, kplus1, lda, &
m, r
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ak(:), s(:), w(:), work1(:), &
work2(:), x(:), y(:)
! .. Executable Statements ..
Write (nout,*) 'E02ADF Example Program Results'
! Skip heading in data file
Read (nin,*)
Read (nin,*) m
Read (nin,*) k, iwght
kplus1 = k + 1
lda = kplus1
Allocate (a(lda,kplus1),s(kplus1),w(m),work1(3*m),work2(2*kplus1),x(m), &
y(m))
Do r = 1, m
If (iwght/=1) Then
Read (nin,*) x(r), y(r), w(r)
Else
Read (nin,*) x(r), y(r)
w(r) = 1.0E0_nag_wp
End If
End Do
ifail = 0
Call e02adf(m,kplus1,lda,x,y,w,work1,work2,a,s,ifail)
Do i = 0, k
Write (nout,*)
Write (nout,99998) 'Degree', i, ' R.M.S. residual =', s(i+1)
Write (nout,*)
Write (nout,*) ' J Chebyshev coeff A(J)'
Write (nout,99997)(j,a(i+1,j),j=1,i+1)
End Do
Allocate (ak(kplus1))
ak(1:kplus1) = a(kplus1,1:kplus1)
x1 = x(1)
xm = x(m)
Write (nout,*)
Write (nout,99996) 'Polynomial approximation and residuals for degree', &
k
Write (nout,*)
Write (nout,*) &
' R Abscissa Weight Ordinate Polynomial Residual'
Do r = 1, m
xcapr = ((x(r)-x1)-(xm-x(r)))/(xm-x1)
ifail = 0
Call e02aef(kplus1,ak,xcapr,fit,ifail)
Write (nout,99999) r, x(r), w(r), y(r), fit, fit - y(r)
If (r<m) Then
xarg = 0.5E0_nag_wp*(x(r)+x(r+1))
xcapr = ((xarg-x1)-(xm-xarg))/(xm-x1)
ifail = 0
Call e02aef(kplus1,ak,xcapr,fit,ifail)
Write (nout,99995) xarg, fit
End If
End Do
99999 Format (1X,I3,4F11.4,E11.2)
99998 Format (1X,A,I4,A,E12.2)
99997 Format (1X,I3,F15.4)
99996 Format (1X,A,I4)
99995 Format (4X,F11.4,22X,F11.4)
End Program e02adfe