/* nag_pde_dim1_parab_coll (d03pdc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.4, 2022.
*/
#include <math.h>
#include <nag.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL uinit(Integer, Integer, const double[], double[],
Nag_Comm *);
static void NAG_CALL pdedef(Integer, double, const double[], Integer,
const double[], const double[], double[], double[],
double[], Integer *, Nag_Comm *);
static void NAG_CALL bndary(Integer, double, const double[], const double[],
Integer, double[], double[], Integer *, Nag_Comm *);
#ifdef __cplusplus
}
#endif
#define U(I, J) u[npde * ((J)-1) + (I)-1]
#define UOUT(I, J, K) uout[npde * (intpts * ((K)-1) + (J)-1) + (I)-1]
#define P(I, J, K) p[npde * (npde * ((K)-1) + (J)-1) + (I)-1]
#define Q(I, J) q[npde * ((J)-1) + (I)-1]
#define R(I, J) r[npde * ((J)-1) + (I)-1]
#define UX(I, J) ux[npde * ((J)-1) + (I)-1]
int main(void) {
const Integer nbkpts = 10, nelts = nbkpts - 1, npde = 2, npoly = 3, m = 0,
itype = 1, npts = nelts * npoly + 1, neqn = npde * npts,
intpts = 6, npl1 = npoly + 1, lisave = neqn + 24,
mu = npde * (npoly + 1) - 1, lenode = (3 * mu + 1) * neqn,
nwkres = 3 * npl1 * npl1 +
npl1 * (npde * npde + 6 * npde + nbkpts + 1) +
13 * npde + 5,
lrsave = 11 * neqn + 50 + nwkres + lenode;
static double ruser[3] = {-1.0, -1.0, -1.0};
static double xout[6] = {-1., -.6, -.2, .2, .6, 1.};
double acc, tout, ts;
Integer exit_status = 0, i, ind, it, itask, itrace;
double *rsave = 0, *u = 0, *uout = 0, *x = 0, *xbkpts = 0;
Integer *isave = 0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;
INIT_FAIL(fail);
printf("nag_pde_dim1_parab_coll (d03pdc) Example Program Results\n\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
/* Allocate memory */
if (!(rsave = NAG_ALLOC(lrsave, double)) ||
!(u = NAG_ALLOC(npde * npts, double)) ||
!(uout = NAG_ALLOC(npde * intpts * itype, double)) ||
!(x = NAG_ALLOC(npts, double)) || !(xbkpts = NAG_ALLOC(nbkpts, double)) ||
!(isave = NAG_ALLOC(lisave, Integer))) {
printf("Allocation failure\n");
exit_status = 1;
goto END;
}
acc = 1e-4;
itrace = 0;
/* Set the break-points */
for (i = 0; i < 10; ++i) {
xbkpts[i] = i * 2.0 / 9.0 - 1.0;
}
ind = 0;
itask = 1;
ts = 0.0;
tout = 1e-5;
printf(" Polynomial degree =%4" NAG_IFMT "", npoly);
printf(" No. of elements = %4" NAG_IFMT "\n\n", nelts);
printf(" Accuracy requirement = %12.3e", acc);
printf(" Number of points = %5" NAG_IFMT "\n\n", npts);
printf(" t / x ");
for (i = 0; i < 6; ++i) {
printf("%8.4f", xout[i]);
printf((i + 1) % 6 == 0 || i == 5 ? "\n" : "");
}
printf("\n");
/* Loop over output values of t */
for (it = 0; it < 5; ++it) {
tout *= 10.0;
/* nag_pde_dim1_parab_coll (d03pdc).
* General system of parabolic PDEs, method of lines,
* Chebyshev C^0 collocation, one space variable
*/
nag_pde_dim1_parab_coll(npde, m, &ts, tout, pdedef, bndary, u, nbkpts,
xbkpts, npoly, npts, x, uinit, acc, rsave, lrsave,
isave, lisave, itask, itrace, 0, &ind, &comm,
&saved, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_pde_dim1_parab_coll (d03pdc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Interpolate at required spatial points */
/* nag_pde_dim1_parab_coll_interp (d03pyc).
* PDEs, spatial interpolation with nag_pde_dim1_parab_coll
* (d03pdc) or nag_pde_dim1_parab_dae_coll (d03pjc)
*/
nag_pde_dim1_parab_coll_interp(npde, u, nbkpts, xbkpts, npoly, npts, xout,
intpts, itype, uout, rsave, lrsave, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_pde_dim1_parab_coll_interp (d03pyc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\n %6.4f u(1)", tout);
for (i = 1; i <= 6; ++i) {
printf("%8.4f", UOUT(1, i, 1));
printf(i % 6 == 0 || i == 6 ? "\n" : "");
}
printf(" u(2)");
for (i = 1; i <= 6; ++i) {
printf("%8.4f", UOUT(2, i, 1));
printf(i % 6 == 0 || i == 6 ? "\n" : "");
}
}
/* Print integration statistics */
printf("\n");
printf(" Number of integration steps in time ");
printf("%4" NAG_IFMT "\n", isave[0]);
printf(" Number of residual evaluations of resulting ODE system ");
printf("%4" NAG_IFMT "\n", isave[1]);
printf(" Number of Jacobian evaluations ");
printf("%4" NAG_IFMT "\n", isave[2]);
printf(" Number of iterations of nonlinear solver ");
printf("%4" NAG_IFMT "\n", isave[4]);
END:
NAG_FREE(rsave);
NAG_FREE(u);
NAG_FREE(uout);
NAG_FREE(x);
NAG_FREE(xbkpts);
NAG_FREE(isave);
return exit_status;
}
static void NAG_CALL uinit(Integer npde, Integer npts, const double x[],
double u[], Nag_Comm *comm) {
Integer i;
double piby2;
if (comm->user[0] == -1.0) {
printf("(User-supplied callback uinit, first invocation.)\n");
comm->user[0] = 0.0;
}
piby2 = 0.5 * nag_math_pi;
for (i = 1; i <= npts; ++i) {
U(1, i) = -sin(piby2 * x[i - 1]);
U(2, i) = -piby2 * piby2 * U(1, i);
}
return;
}
static void NAG_CALL pdedef(Integer npde, double t, const double x[],
Integer nptl, const double u[], const double ux[],
double p[], double q[], double r[], Integer *ires,
Nag_Comm *comm) {
Integer i;
if (comm->user[1] == -1.0) {
printf("(User-supplied callback pdedef, first invocation.)\n");
comm->user[1] = 0.0;
}
for (i = 1; i <= nptl; ++i) {
Q(1, i) = U(2, i);
Q(2, i) = U(1, i) * UX(2, i) - UX(1, i) * U(2, i);
R(1, i) = UX(1, i);
R(2, i) = UX(2, i);
P(1, 1, i) = 0.0;
P(1, 2, i) = 0.0;
P(2, 1, i) = 0.0;
P(2, 2, i) = 1.0;
}
return;
}
static void NAG_CALL bndary(Integer npde, double t, const double u[],
const double ux[], Integer ibnd, double beta[],
double gamma[], Integer *ires, Nag_Comm *comm) {
if (comm->user[2] == -1.0) {
printf("(User-supplied callback bndary, first invocation.)\n");
comm->user[2] = 0.0;
}
if (ibnd == 0) {
beta[0] = 1.0;
gamma[0] = 0.0;
beta[1] = 0.0;
gamma[1] = u[0] - 1.0;
} else {
beta[0] = 1.0;
gamma[0] = 0.0;
beta[1] = 0.0;
gamma[1] = u[0] + 1.0;
}
return;
}