/* nag_tsa_multi_autocorr_part (g13dbc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.3, 2022.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
double v0;
Integer exit_status, i1, i, j, j1, k, nk, nl, ns, nvp, pdc0, pddb;
NagError fail;
/* Arrays */
double *c0 = 0, *c = 0, *d = 0, *db = 0, *p = 0, *v = 0, *w = 0, *wb = 0;
#define C(I, J, K) c[((K - 1) * ns + (J - 1)) * ns + I - 1]
#define D(I, J, K) d[((K - 1) * ns + (J - 1)) * ns + I - 1]
#define W(I, J, K) w[((K - 1) * ns + (J - 1)) * ns + I - 1]
#define WB(I, J, K) wb[((K - 1) * ns + (J - 1)) * ns + I - 1]
#ifdef NAG_COLUMN_MAJOR
#define C0(I, J) c0[(J - 1) * pdc0 + I - 1]
#define DB(I, J) db[(J - 1) * pddb + I - 1]
#else
#define C0(I, J) c0[(I - 1) * pdc0 + J - 1]
#define DB(I, J) db[(I - 1) * pddb + J - 1]
#endif
INIT_FAIL(fail);
exit_status = 0;
printf("nag_tsa_multi_autocorr_part (g13dbc) Example Program Results\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Read series length, and numbers of lags */
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &ns, &nl, &nk);
if (ns > 0 && nl > 0 && nk > 0) {
/* Allocate arrays */
if (!(c0 = NAG_ALLOC(ns * ns, double)) ||
!(c = NAG_ALLOC(ns * ns * nl, double)) ||
!(d = NAG_ALLOC(ns * ns * nk, double)) ||
!(db = NAG_ALLOC(ns * ns, double)) || !(p = NAG_ALLOC(nk, double)) ||
!(v = NAG_ALLOC(nk, double)) ||
!(w = NAG_ALLOC(ns * ns * nk, double)) ||
!(wb = NAG_ALLOC(ns * ns * nk, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
pdc0 = ns;
pddb = ns;
/* Read autocovariances */
for (i = 1; i <= ns; ++i) {
for (j = 1; j <= ns; ++j)
scanf("%lf", &C0(i, j));
}
scanf("%*[^\n] ");
for (k = 1; k <= nl; ++k) {
for (i = 1; i <= ns; ++i) {
for (j = 1; j <= ns; ++j)
scanf("%lf", &C(i, j, k));
}
}
scanf("%*[^\n] ");
/* Call routine to calculate multivariate partial
autocorrelation function */
/* nag_tsa_multi_autocorr_part (g13dbc).
* Multivariate time series, multiple squared partial
* autocorrelations
*/
nag_tsa_multi_autocorr_part(c0, c, ns, nl, nk, p, &v0, v, d, db, w, wb,
&nvp, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_tsa_multi_autocorr_part (g13dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
if (fail.code == NE_NOERROR || fail.code == NE_POS_DEF) {
printf("\n");
printf("Number of valid parameters =%10" NAG_IFMT "\n", nvp);
printf("\n");
printf("Multivariate partial autocorrelations\n");
for (i1 = 1; i1 <= nk; ++i1) {
printf("%13.5f", p[i1 - 1]);
if (i1 % 5 == 0 || i1 == nk)
printf("\n");
}
printf("\n");
printf("Zero lag predictor error variance determinant\n");
printf("followed by error variance ratios\n");
printf("%12.5f", v0);
for (i1 = 1; i1 <= nk; ++i1) {
printf("%13.5f", v[i1 - 1]);
if (i1 % 5 == 0 || i1 == nk)
printf("\n");
}
printf("\n");
printf("Prediction error variances\n");
printf("\n");
for (k = 1; k <= nk; ++k) {
printf("Lag =%5" NAG_IFMT "\n", k);
for (i = 1; i <= ns; ++i) {
for (j1 = 1; j1 <= ns; ++j1) {
printf("%13.5f", D(i, j1, k));
if (j1 % 5 == 0 || j1 == ns)
printf("\n");
}
}
printf("\n");
}
printf("Last backward prediction error variances\n");
printf("\n");
printf("Lag =%5" NAG_IFMT "\n", nvp);
for (i = 1; i <= ns; ++i) {
for (j1 = 1; j1 <= ns; ++j1) {
printf("%13.5f", DB(i, j1));
if (j1 % 5 == 0 || j1 == ns)
printf("\n");
}
}
printf("\n");
printf("Prediction coefficients\n");
printf("\n");
for (k = 1; k <= nk; ++k) {
printf("Lag =%5" NAG_IFMT "\n", k);
for (i = 1; i <= ns; ++i) {
for (j1 = 1; j1 <= ns; ++j1) {
printf("%13.5f", W(i, j1, k));
if (j1 % 5 == 0 || j1 == ns)
printf("\n");
}
}
printf("\n");
}
printf("Backward prediction coefficients\n");
printf("\n");
for (k = 1; k <= nk; ++k) {
printf("Lag =%5" NAG_IFMT "\n", k);
for (i = 1; i <= ns; ++i) {
for (j1 = 1; j1 <= ns; ++j1) {
printf("%13.5f", WB(i, j1, k));
if (j1 % 5 == 0 || j1 == ns)
printf("\n");
}
}
printf("\n");
}
}
}
END:
NAG_FREE(c0);
NAG_FREE(c);
NAG_FREE(d);
NAG_FREE(db);
NAG_FREE(p);
NAG_FREE(v);
NAG_FREE(w);
NAG_FREE(wb);
return exit_status;
}