NAG Library Manual, Mark 28.3
```/* F11JB_P0W_F C++ Header Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
* Mark 28.3, 2022.
*/
#include <dco.hpp>
#include <iostream>
#include <nag.h>
#include <nagx04.h>
#include <stdio.h>
using namespace std;

extern "C"
{
Integer &          n,
Integer &          nnz,
Integer            irow[],
Integer            icol[],
double             a[],
double             y[],
Integer            istr[],
Integer            perm_fwd[],
Integer            perm_inv[],
Integer            iwork[]);
}

int main()
{
int               exit_status = 0;
Integer           ifail = 0;

cout << "F11JB_P0W_F C++ Header Example Program Results\n\n";
// Skip heading in data file
string mystr;
getline(cin, mystr);

// Read order of matrix and number of nonzero entries
Integer n, nnz;
cin >> n;
cin >> nnz;

Integer  la     = 3 * nnz;
Integer  liwork = 2 * la + 7 * n + 1;
double * a = 0, *x = 0, *y = 0;
Integer *icol = 0, *ipiv = 0, *irow = 0, *istr = 0, *iwork = 0;
Integer *perm_fwd = 0, *perm_inv = 0;

a        = new double[la];
x        = new double[n];
y        = new double[n];
icol     = new Integer[la];
ipiv     = new Integer[n];
irow     = new Integer[la];
istr     = new Integer[n + 1];
iwork    = new Integer[liwork];
perm_fwd = new Integer[n];
perm_inv = new Integer[n];

for (int i = 0; i < nnz; i++)
{
cin >> a[i] >> irow[i] >> icol[i];
}

for (int i = 0; i < n; i++)
{
cin >> y[i];
}

ifail = 0;
// Calculate Cholesky factorization
Integer lfill = -1;
Integer nnzc, npivm;
double  dscale, dtol;
dtol   = 0.0;
dscale = 0.0;

// Compute reverse Cuthill-McKee permutation for bandwidth reduction
do_rcm(ad_handle, n, nnz, irow, icol, a, y, istr, perm_fwd, perm_inv, iwork);

ifail = 0;
"M", ipiv, istr, nnzc, npivm, iwork, liwork, ifail);

// Check the output value of NPIVM
if (npivm > 0)
{
cout << " Factorization is not complete" << endl;
goto END;
}

// Solve P L D L^T P^T x = y
ifail = 0;
nag::ad::f11jb(ad_handle, n, a, la, irow, icol, ipiv, istr, "C", y, x, ifail);

// Output results
cout.setf(ios::scientific, ios::floatfield);
cout.precision(4);
cout << "  Solution vector" << endl;
for (int i = 0; i < n; ++i)
{
cout.width(12);
cout << x[perm_inv[i]] << endl;
}

END:

delete[] a;
delete[] x;
delete[] y;
delete[] icol;
delete[] ipiv;
delete[] irow;
delete[] istr;
delete[] iwork;
delete[] perm_fwd;
delete[] perm_inv;

return exit_status;
}

Integer &          n,
Integer &          nnz,
Integer            irow[],
Integer            icol[],
double             a[],
double             y[],
Integer            istr[],
Integer            perm_fwd[],
Integer            perm_inv[],
Integer            iwork[])
{
logical lopts[5];
lopts[0] = 0;
lopts[1] = 0;
lopts[2] = 1;
lopts[3] = 1;
lopts[4] = 1;

double *rwork = 0;

// SCS to CS, must add the upper triangle entries.
Integer j = nnz;
for (Integer i = 0; i < nnz; i++)
{
if (irow[i] > icol[i])
{
// strictly lower triangle, add the transposed
a[j]    = a[i];
irow[j] = icol[i];
icol[j] = irow[i];
j++;
}
}

Integer nnz_cs = j;

// Reorder, CS to CCS, icolzp in istr
Integer ifail = 0;
ifail);

// Calculate reverse Cuthill-McKee
ifail = 0;
ifail);

// compute inverse perm, in perm_inv
for (int i = 0; i < n; i++)
{
perm_fwd[i]           = perm_fwd[i] - 1;
perm_inv[perm_fwd[i]] = i;
}

// Apply permutation on column/row indices
Integer *iswapc = 0, *iswapr = 0;
iswapc = new Integer[nnz_cs];
iswapr = new Integer[nnz_cs];
for (int i = 0; i < nnz_cs; i++)
{
iswapc[i] = perm_inv[icol[i] - 1];
iswapr[i] = perm_inv[irow[i] - 1];
}
for (int i = 0; i < nnz_cs; i++)
{
icol[i] = iswapc[i] + 1;
irow[i] = iswapr[i] + 1;
}
delete[] iswapc;
delete[] iswapr;

// restrict to lower triangle, SCS format
// copying entries upwards
j = 0;
for (Integer i = 0; i < nnz_cs; i++)
{
if (irow[i] >= icol[i])
{
// non-upper triangle, bubble up
a[j]    = a[i];
icol[j] = icol[i];
irow[j] = irow[i];
j++;
}
}

Integer nnz_scs = j;
// sort
ifail = 0;
ifail);

// permute rhs vector
rwork = new double[n];
for (int i = 0; i < n; i++)
{
rwork[i] = y[perm_fwd[i]];
}
for (int i = 0; i < n; i++)
{
y[i] = rwork[i];
}
delete[] rwork;
return;
}
```