/* nag_lapackeig_zgerqf (f08cvc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.3, 2022.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
Complex zero = {0.0, 0.0};
Integer i, j, m, n, nrhs, pda, pdb, pdx;
Integer exit_status = 0;
/* Arrays */
Complex *a = 0, *b = 0, *tau = 0, *x = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_lapackeig_zgerqf (f08cvc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;
pdx = n;
#else
pda = n;
pdb = nrhs;
pdx = 1;
#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) || !(b = NAG_ALLOC(m * nrhs, Complex)) ||
!(tau = NAG_ALLOC(m, Complex)) || !(x = NAG_ALLOC(n, Complex))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read the matrix A and the vectors b from data file */
for (i = 1; i <= m; ++i)
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n]");
for (i = 1; i <= m; ++i)
for (j = 1; j <= nrhs; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n]");
/* nag_lapackeig_zgerqf (f08cvc).
* Compute the RQ factorization of A.
*/
nag_lapackeig_zgerqf(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapackeig_zgerqf (f08cvc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_blast_zge_copy (f16tfc).
* Copy the m*nrhs element vector b into x2, where x2 is
* the vector containing the elements x(n-m+1), ..., x(n) of x.
*/
nag_blast_zge_copy(order, Nag_NoTrans, m, 1, &B(1, 1), pdb, &x[n - m], pdx,
&fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_blast_zge_copy (f16tfc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_lapacklin_ztrtrs (f07tsc).
* Solve R*y2 = b, storing the result in x2.
*/
nag_lapacklin_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, m, 1,
&A(1, n - m + 1), pda, &x[n - m], pdx, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapacklin_ztrtrs (f07tsc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_blast_zload (f16hbc).
* Set y1 to zero (stored in rows 1 to (n-m) of x).
*/
nag_blast_zload(n - m, zero, x, 1, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_blast_zload (f16hbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_lapackeig_zunmrq (f08cxc).
* Compute minimum-norm solution x = (Q^H)*y.
*/
nag_lapackeig_zunmrq(order, Nag_LeftSide, Nag_ConjTrans, n, 1, m, a, pda, tau,
x, pdx, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapackeig_zunmrq (f08cxc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print minimum-norm solution */
printf("Minimum-norm solution\n");
for (i = 0; i < n; ++i)
printf("(%8.4f, %8.4f)\n", x[i].re, x[i].im);
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(tau);
NAG_FREE(x);
return exit_status;
}
#undef A
#undef B