NAG Library Manual, Mark 28.3
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description
/* nag_lapacklin_zpprfs (f07gvc) Example Program.
 *
 * Copyright 2022 Numerical Algorithms Group.
 *
 * Mark 28.3, 2022.
 */

#include <nag.h>
#include <stdio.h>

int main(void) {
  /* Scalars */
  Integer i, j, n, nrhs, ap_len, afp_len;
  Integer berr_len, ferr_len, pdb, pdx;
  Integer exit_status = 0;
  NagError fail;
  Nag_UploType uplo;
  Nag_OrderType order;
  /* Arrays */
  char nag_enum_arg[40];
  Complex *afp = 0, *ap = 0, *b = 0, *x = 0;
  double *berr = 0, *ferr = 0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I, J) ap[J * (J - 1) / 2 + I - 1]
#define A_LOWER(I, J) ap[(2 * n - J) * (J - 1) / 2 + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
#define X(I, J) x[(J - 1) * pdx + I - 1]
  order = Nag_ColMajor;
#else
#define A_LOWER(I, J) ap[I * (I - 1) / 2 + J - 1]
#define A_UPPER(I, J) ap[(2 * n - I) * (I - 1) / 2 + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
#define X(I, J) x[(I - 1) * pdx + J - 1]
  order = Nag_RowMajor;
#endif

  INIT_FAIL(fail);

  printf("nag_lapacklin_zpprfs (f07gvc) Example Program Results\n\n");

  /* Skip heading in data file */
  scanf("%*[^\n] ");
  scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &n, &nrhs);
  ap_len = n * (n + 1) / 2;
  afp_len = n * (n + 1) / 2;
  berr_len = nrhs;
  ferr_len = nrhs;
#ifdef NAG_COLUMN_MAJOR
  pdb = n;
  pdx = n;
#else
  pdb = nrhs;
  pdx = nrhs;
#endif

  /* Allocate memory */
  if (!(afp = NAG_ALLOC(afp_len, Complex)) ||
      !(ap = NAG_ALLOC(ap_len, Complex)) ||
      !(b = NAG_ALLOC(n * nrhs, Complex)) ||
      !(x = NAG_ALLOC(n * nrhs, Complex)) ||
      !(berr = NAG_ALLOC(berr_len, double)) ||
      !(ferr = NAG_ALLOC(ferr_len, double))) {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }
  /* Read A and B from data file, and copy A to AFP and B to X */
  scanf(" %39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  uplo = (Nag_UploType)nag_enum_name_to_value(nag_enum_arg);

  if (uplo == Nag_Upper) {
    for (i = 1; i <= n; ++i) {
      for (j = i; j <= n; ++j)
        scanf(" ( %lf , %lf )", &A_UPPER(i, j).re, &A_UPPER(i, j).im);
    }
    scanf("%*[^\n] ");
  } else {
    for (i = 1; i <= n; ++i) {
      for (j = 1; j <= i; ++j)
        scanf(" ( %lf , %lf )", &A_LOWER(i, j).re, &A_LOWER(i, j).im);
    }
    scanf("%*[^\n] ");
  }
  for (i = 1; i <= n; ++i) {
    for (j = 1; j <= nrhs; ++j)
      scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
  }
  scanf("%*[^\n] ");

  for (i = 1; i <= n * (n + 1) / 2; ++i) {
    afp[i - 1].re = ap[i - 1].re;
    afp[i - 1].im = ap[i - 1].im;
  }
  for (i = 1; i <= n; ++i) {
    for (j = 1; j <= nrhs; ++j) {
      X(i, j).re = B(i, j).re;
      X(i, j).im = B(i, j).im;
    }
  }
  /* Factorize A in the array AFP */
  /* nag_lapacklin_zpptrf (f07grc).
   * Cholesky factorization of complex Hermitian
   * positive-definite matrix, packed storage
   */
  nag_lapacklin_zpptrf(order, uplo, n, afp, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_lapacklin_zpptrf (f07grc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }
  /* Compute solution in the array X */
  /* nag_lapacklin_zpptrs (f07gsc).
   * Solution of complex Hermitian positive-definite system of
   * linear equations, multiple right-hand sides, matrix
   * already factorized by nag_lapacklin_zpptrf (f07grc), packed storage
   */
  nag_lapacklin_zpptrs(order, uplo, n, nrhs, afp, x, pdx, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_lapacklin_zpptrs (f07gsc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }
  /* Improve solution, and compute backward errors and */
  /* estimated bounds on the forward errors */
  /* nag_lapacklin_zpprfs (f07gvc).
   * Refined solution with error bounds of complex Hermitian
   * positive-definite system of linear equations, multiple
   * right-hand sides, packed storage
   */
  nag_lapacklin_zpprfs(order, uplo, n, nrhs, ap, afp, b, pdb, x, pdx, ferr,
                       berr, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_lapacklin_zpprfs (f07gvc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }
  /* Print solution */
  /* nag_file_print_matrix_complex_gen_comp (x04dbc).
   * Print complex general matrix (comprehensive)
   */
  fflush(stdout);
  nag_file_print_matrix_complex_gen_comp(
      order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
      Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels, 0,
      Nag_IntegerLabels, 0, 80, 0, 0, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }
  printf("\nBackward errors (machine-dependent)\n");
  for (j = 1; j <= nrhs; ++j)
    printf("%11.1e%s", berr[j - 1], j % 4 == 0 ? "\n" : " ");
  printf("\nEstimated forward error bounds (machine-dependent)\n");
  for (j = 1; j <= nrhs; ++j)
    printf("%11.1e%s", ferr[j - 1], j % 4 == 0 ? "\n" : " ");
  printf("\n");

END:
  NAG_FREE(afp);
  NAG_FREE(ap);
  NAG_FREE(b);
  NAG_FREE(x);
  NAG_FREE(berr);
  NAG_FREE(ferr);

  return exit_status;
}