/* F07AR_T1W_F C++ Header Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
* Mark 28.3, 2022.
*/
#include <dco.hpp>
#include <iostream>
#include <nag.h>
#include <nagad.h>
#include <nagx04.h>
#include <stdio.h>
#include <string>
using namespace std;
int main()
{
int exit_status = 0;
nag::ad::handle_t ad_handle;
Integer ifail = 0;
cout << "F07AR_T1W_F C++ Header Example Program Results\n\n";
// Skip heading in data file
string mystr;
getline(cin, mystr);
// Read problem size and number of right-hand-sides
Integer n;
cin >> n;
// Allocate arrays containing A and its factorized form, B
// and the solution X.
nagad_t1w_w_ctype *a = 0, *a_in = 0, *work = 0;
nagad_t1w_w_rtype *a_r = 0, *a_i = 0;
Complex * ar = 0, *drda = 0, *dida = 0;
Integer * ipiv = 0;
Integer lwork = 64 * n;
a = new nagad_t1w_w_ctype[n * n];
a_in = new nagad_t1w_w_ctype[n * n];
a_r = new nagad_t1w_w_rtype[n * n];
a_i = new nagad_t1w_w_rtype[n * n];
work = new nagad_t1w_w_ctype[lwork];
ipiv = new Integer[n];
ar = new Complex[n * n];
drda = new Complex[n * n];
dida = new Complex[n * n];
// Read the matrix A, register and copy
double dr, di;
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
Integer k = i + j * n;
cin >> dr >> di;
a_r[k] = dr;
a_i[k] = di;
ar[k].re = dr;
ar[k].im = di;
}
}
// Print matrix A
NagError fail;
INIT_FAIL(fail);
x04dac(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, ar, n, " A",
0, &fail);
// Create AD configuration data object
ifail = 0;
for (int i = 0; i < 2 * n; ++i)
{
Integer k;
double inc = 1.0;
if (i < n)
{
k = i * (n + 1);
dco::derivative(a_r[k]) = inc;
}
else
{
k = (i - n) * (n + 1);
dco::derivative(a_i[k]) = inc;
}
for (int j = 0; j < n * n; ++j)
{
a[j].real(a_r[j]);
a[j].imag(a_i[j]);
}
// Factorize the matrix A
ifail = 0;
nag::ad::f07ar(ad_handle, n, n, a, n, ipiv, ifail);
// Invert A
ifail = 0;
nag::ad::f07aw(ad_handle, n, a, n, ipiv, work, lwork, ifail);
double zero = 0.0;
if (i < n)
{
dco::derivative(a_r[k]) = zero;
}
else
{
dco::derivative(a_i[k]) = zero;
}
for (int j = 0; j < n; j++)
{
nagad_t1w_w_rtype dar, dai;
Integer p = j + j * n;
dar = real(a[p]);
dai = imag(a[p]);
double da = dco::derivative(dar);
double di = dco::derivative(dai);
if (i < n)
{
Integer l = j + i * n;
drda[l].re = da;
drda[l].im = di;
}
else
{
Integer l = j + (i - n) * n;
dida[l].re = da;
dida[l].im = di;
}
}
}
// Print Inverse
for (int i = 0; i < n * n; i++)
{
nagad_t1w_w_rtype akr, aki;
akr = real(a[i]);
aki = imag(a[i]);
ar[i].re = dco::value(akr);
ar[i].im = dco::value(aki);
}
cout << endl;
// NagError fail;
INIT_FAIL(fail);
x04dac(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, ar, n,
" Inverse", 0, &fail);
cout << "\n\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
cout << "\n Derivatives of inverse diagonal w.r.t diagonal of A:\n";
// Print derivatives
cout << endl;
INIT_FAIL(fail);
x04dac(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, drda, n,
" d(real(ai(i,i)))/da(j,j)", 0, &fail);
cout << endl;
INIT_FAIL(fail);
x04dac(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, dida, n,
" d(real(ai(i,i)))/da(j,j)", 0, &fail);
ifail = 0;
delete[] a;
delete[] a_in;
delete[] a_r;
delete[] a_i;
delete[] work;
delete[] ipiv;
delete[] ar;
delete[] drda;
delete[] dida;
return exit_status;
}