NAG Library Manual, Mark 28.3
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description
/* nag_linsys_complex_band_solve (f04cbc) Example Program.
 *
 * Copyright 2022 Numerical Algorithms Group.
 *
 * Mark 28.3, 2022.
 */

#include <nag.h>
#include <stdio.h>

int main(void) {
  /* Scalars */
  double errbnd, rcond;
  Integer exit_status, i, j, kl, ku, n, nrhs, pdab, pdb;

  /* Arrays */
  char *clabs = 0, *rlabs = 0;
  Complex *ab = 0, *b = 0;
  Integer *ipiv = 0;

  /* Nag types */
  NagError fail;
  Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR
#define AB(I, J) ab[(J - 1) * pdab + kl + ku + I - J]
#define B(I, J) b[(J - 1) * pdb + I - 1]
  order = Nag_ColMajor;
#else
#define AB(I, J) ab[(I - 1) * pdab + kl + J - I]
#define B(I, J) b[(I - 1) * pdb + J - 1]
  order = Nag_RowMajor;
#endif

  exit_status = 0;
  INIT_FAIL(fail);

  printf("nag_linsys_complex_band_solve (f04cbc)"
         " Example Program Results\n\n");

  /* Skip heading in data file */
  scanf("%*[^\n] ");
  scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &n, &kl,
        &ku, &nrhs);
  if (n > 0 && kl > 0 && ku > 0 && nrhs > 0) {
    /* Allocate memory */
    if (!(clabs = NAG_ALLOC(2, char)) || !(rlabs = NAG_ALLOC(2, char)) ||
        !(ab = NAG_ALLOC((2 * kl + ku + 1) * n, Complex)) ||
        !(b = NAG_ALLOC(n * nrhs, Complex)) ||
        !(ipiv = NAG_ALLOC(n, Integer))) {
      printf("Allocation failure\n");
      exit_status = -1;
      goto END;
    }
    pdab = 2 * kl + ku + 1;
#ifdef NAG_COLUMN_MAJOR
    pdb = n;
#else
    pdb = nrhs;
#endif
  } else {
    printf("%s\n", "One or more of NMAX, KLMAX, KUMAX or NRHSMX is"
                   " too small");
    exit_status = 1;
    return exit_status;
  }

  /* Read A and B from data file */
  for (i = 1; i <= n; ++i) {
    for (j = MAX(i - kl, 1); j <= MIN(i + ku, n); ++j) {
      scanf(" ( %lf , %lf )", &AB(i, j).re, &AB(i, j).im);
    }
  }
  scanf("%*[^\n] ");

  for (i = 1; i <= n; ++i) {
    for (j = 1; j <= nrhs; ++j) {
      scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
    }
  }
  scanf("%*[^\n] ");

  /* Solve the equations AX = B for X */
  /* nag_linsys_complex_band_solve (f04cbc).
   * Computes the solution and error-bound to a complex banded
   * system of linear equations
   */
  nag_linsys_complex_band_solve(order, n, kl, ku, nrhs, ab, pdab, ipiv, b, pdb,
                                &rcond, &errbnd, &fail);
  if (fail.code == NE_NOERROR) {
    /* Print solution, estimate of condition number and approximate */
    /* error bound */
    /* nag_file_print_matrix_complex_gen_comp (x04dbc).
     * Print complex general matrix (comprehensive)
     */
    fflush(stdout);
    nag_file_print_matrix_complex_gen_comp(
        order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
        Nag_BracketForm, "%7.4f", "Solution", Nag_IntegerLabels, 0,
        Nag_IntegerLabels, 0, 80, 0, 0, &fail);
    if (fail.code != NE_NOERROR) {
      printf(
          "Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
          fail.message);
      exit_status = 1;
      goto END;
    }

    printf("\n%s\n%4s%10.1e\n\n", "Estimate of condition number", "",
           1.0 / rcond);
    printf("\n%s\n%4s%10.1e\n\n",
           "Estimate of error bound for computed solutions", "", errbnd);
  } else if (fail.code == NE_RCOND) {
    /* Matrix A is numerically singular.  Print estimate of */
    /* reciprocal of condition number and solution */
    printf("\n%s\n%4s%10.1e\n\n\n",
           "Estimate of reciprocal of condition number", "", rcond);
    /* nag_file_print_matrix_complex_gen_comp (x04dbc), see above. */
    fflush(stdout);
    nag_file_print_matrix_complex_gen_comp(
        order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
        Nag_BracketForm, "%7.4f", "Solution", Nag_IntegerLabels, 0,
        Nag_IntegerLabels, 0, 80, 0, 0, &fail);
    if (fail.code != NE_NOERROR) {
      printf(
          "Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
          fail.message);
      exit_status = 1;
      goto END;
    }
  } else if (fail.code == NE_SINGULAR) {
    /* The upper triangular matrix U is exactly singular.  Print */
    /* details of factorization */

    printf("\n");
    /* nag_file_print_matrix_complex_band_comp (x04dfc).
     * Print complex packed banded matrix (comprehensive)
     */
    fflush(stdout);
    nag_file_print_matrix_complex_band_comp(
        order, n, n, kl, kl + ku, ab, pdab, Nag_BracketForm, "%7.4f",
        "Details of factorization", Nag_IntegerLabels, 0, Nag_IntegerLabels, 0,
        80, 0, 0, &fail);
    if (fail.code != NE_NOERROR) {
      printf(
          "Error from nag_file_print_matrix_complex_band_comp (x04dfc).\n%s\n",
          fail.message);
      exit_status = 1;
      goto END;
    }

    /* Print pivot indices */

    printf("\n%s\n", "Pivot indices");
    for (i = 1; i <= n; ++i) {
      printf("%11" NAG_IFMT "%s", ipiv[i - 1],
             i % 7 == 0 || i == n ? "\n" : " ");
    }
    printf("\n");
  } else {
    printf("Error from nag_linsys_complex_band_solve (f04cbc).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }
END:
  NAG_FREE(clabs);
  NAG_FREE(rlabs);
  NAG_FREE(ab);
  NAG_FREE(b);
  NAG_FREE(ipiv);

  return exit_status;
}