/* nag_inteq_fredholm2_smooth (d05abc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.3, 2022.
*/
#include <math.h>
#include <nag.h>
#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL k(double x, double s, Nag_Comm *comm);
static double NAG_CALL g(double x, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
int main(void) {
/* Scalars */
double a = -1.0, b = 1.0;
double lambda, x0;
Integer exit_status = 0;
Integer i, lx, n;
Nag_Boolean ev = Nag_TRUE, odorev = Nag_TRUE;
/* Arrays */
static double ruser[2] = {-1.0, -1.0};
double *c = 0, *chebr = 0, *f = 0, *x = 0;
/* NAG types */
Nag_Comm comm;
NagError fail;
Nag_Series s = Nag_SeriesEven;
INIT_FAIL(fail);
printf("nag_inteq_fredholm2_smooth (d05abc) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
x0 = 0.5 * (a + b);
/* Set up uniform grid to evaluate Chebyshev polynomials. */
lx = (Integer)(4.000001 * (b - x0)) + 1;
if (!(x = NAG_ALLOC(lx, double)) || !(chebr = NAG_ALLOC(lx, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
x[0] = x0;
for (i = 1; i < lx; i++)
x[i] = x[i - 1] + 0.25;
printf("\nSolution is even\n");
lambda = -1.0 / nag_math_pi;
for (n = 5; n <= 10; n += 5) {
if (!(f = NAG_ALLOC(n, double)) || !(c = NAG_ALLOC(n, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/*
nag_inteq_fredholm2_smooth (d05abc).
Linear non-singular Fredholm integral equation, second kind,
smooth kernel.
*/
nag_inteq_fredholm2_smooth(lambda, a, b, n, k, g, odorev, ev, f, c, &comm,
&fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_inteq_fredholm2_smooth (d05abc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nResults for n = %" NAG_IFMT "\n\n", n);
printf("Solution on first %2" NAG_IFMT " Chebyshev points and Chebyshev"
" coefficients\n",
n);
printf("%3s%12s%18s%12s\n", "i", "x", "f[i]", "c[i]");
for (i = 0; i < n; i++) {
double y = cos(nag_math_pi * (double)(i) / (double)(2 * n - 1));
printf("%3" NAG_IFMT "%15.5f%15.5f%15.5e\n", i, y, f[i], c[i]);
}
printf("\n");
/*
Evaluate and print solution on uniform grid.
nag_sum_chebyshev (c06dcc).
Sum of a Chebyshev series at a set of points.
*/
nag_sum_chebyshev(x, lx, a, b, c, n, s, chebr, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sum_chebyshev (c06dcc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("Solution on evenly spaced grid\n");
printf("\n x f(x)\n");
for (i = 0; i < lx; i++)
printf("%8.4f%15.5f\n", x[i], chebr[i]);
printf("\n");
NAG_FREE(c);
NAG_FREE(f);
}
END:
NAG_FREE(c);
NAG_FREE(f);
NAG_FREE(chebr);
NAG_FREE(x);
return exit_status;
}
static double NAG_CALL k(double x, double s, Nag_Comm *comm) {
/* Scalars */
double alpha = 1.0;
if (comm->user[0] == -1.0) {
printf("(User-supplied callback k, first invocation.)\n");
comm->user[0] = 0.0;
}
return alpha / (pow(alpha, 2) + pow(x - s, 2));
}
static double NAG_CALL g(double x, Nag_Comm *comm) {
if (comm->user[1] == -1.0) {
printf("(User-supplied callback g, first invocation.)\n");
comm->user[1] = 0.0;
}
return 1.0;
}