/* nag_quad_dim1_quad_wt_alglog_1 (d01spc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.3, 2022.
*
*/
#include <math.h>
#include <nag.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL f_sin(double x, Nag_User *comm);
static double NAG_CALL f_cos(double x, Nag_User *comm);
#ifdef __cplusplus
}
#endif
int main(void) {
/* Scalars */
Integer exit_status = 0;
Integer max_num_subint, wt_array_ind;
int numfunc;
double a, b, epsabs, abserr, epsrel, result;
/* Arrays */
static Integer use_comm[2] = {1, 1};
static double alpha[2] = {0.0, -0.5};
static double beta[2] = {0.0, -0.5};
static const char *Nag_QuadWeight_array[] = {
"Nag_Alg", "Nag_Alg_loga", "Nag_Alg_logb", "Nag_Alg_loga_logb"};
/* Nag Types */
Nag_QuadProgress qp;
Nag_QuadWeight wt_func;
Nag_User comm;
NagError fail;
INIT_FAIL(fail);
printf("nag_quad_dim1_quad_wt_alglog_1 (d01spc) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.p = (Pointer)&use_comm;
epsabs = 0.0;
epsrel = 0.0001;
a = 0.0;
b = 1.0;
max_num_subint = 200;
for (numfunc = 0; numfunc < 2; ++numfunc) {
switch (numfunc) {
default:
case 0:
wt_func = Nag_Alg_loga;
wt_array_ind = 1;
/* nag_quad_dim1_quad_wt_alglog_1 (d01spc).
* One-dimensional adaptive quadrature, weight function with
* end-point singularities of algebraic-logarithmic type,
* thread-safe
*/
nag_quad_dim1_quad_wt_alglog_1(f_cos, a, b, alpha[numfunc], beta[numfunc],
wt_func, epsabs, epsrel, max_num_subint,
&result, &abserr, &qp, &comm, &fail);
printf("\nIntegral of cos(10*pi*x) on [a,b]\n");
break;
case 1:
wt_func = Nag_Alg;
wt_array_ind = 0;
nag_quad_dim1_quad_wt_alglog_1(f_sin, a, b, alpha[numfunc], beta[numfunc],
wt_func, epsabs, epsrel, max_num_subint,
&result, &abserr, &qp, &comm, &fail);
printf("\nIntegral of sin(10*x) on [a,b]\n");
}
printf("---------------------------------\n");
printf("a - lower limit of integration = %9.4f\n", a);
printf("b - upper limit of integration = %9.4f\n", b);
printf("epsabs - absolute accuracy requested = %11.2e\n", epsabs);
printf("epsrel - relative accuracy requested = %11.2e\n\n", epsrel);
printf("alpha - weight function parameter = %9.4f\n", alpha[numfunc]);
printf("beta - weight function parameter = %9.4f\n", beta[numfunc]);
printf("wt_func - weight function used = %s\n",
Nag_QuadWeight_array[wt_array_ind]);
if (fail.code != NE_NOERROR)
printf("%s\n", fail.message);
if (fail.code == NE_NOERROR || fail.code == NE_QUAD_BAD_SUBDIV ||
fail.code == NE_QUAD_MAX_SUBDIV || fail.code == NE_QUAD_ROUNDOFF_TOL) {
printf("result - approximation to the integral = %10.5f\n", result);
printf("abserr - estimate of absolute error = %11.2e\n", abserr);
printf("qp.fun_count - function evaluations = %4" NAG_IFMT "\n",
qp.fun_count);
printf("qp.num_subint - subintervals used = %4" NAG_IFMT "\n\n",
qp.num_subint);
/* Free memory used by qp */
NAG_FREE(qp.sub_int_beg_pts);
NAG_FREE(qp.sub_int_end_pts);
NAG_FREE(qp.sub_int_result);
NAG_FREE(qp.sub_int_error);
} else {
exit_status = 1;
goto END;
}
}
END:
return exit_status;
}
static double NAG_CALL f_cos(double x, Nag_User *comm) {
double a;
double pi;
Integer *use_comm = (Integer *)comm->p;
if (use_comm[0]) {
printf("(User-supplied callback f_cos, first invocation.)\n");
use_comm[0] = 0;
}
/* nag_math_pi (x01aac). */
pi = nag_math_pi;
a = pi * 10.0;
return cos(a * x);
}
static double NAG_CALL f_sin(double x, Nag_User *comm) {
double omega;
Integer *use_comm = (Integer *)comm->p;
if (use_comm[1]) {
printf("(User-supplied callback f_sin, first invocation.)\n");
use_comm[1] = 0;
}
omega = 10.0;
return sin(omega * x);
}