/* nag_sum_fft_complex_1d (c06pcc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.3, 2022.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
Integer exit_status = 0, i, n;
/* Arrays */
Complex *x = 0, *z = 0, *x_back = 0;
/* Nag Types */
NagError fail;
INIT_FAIL(fail);
printf("nag_sum_fft_complex_1d (c06pcc) Example Program Results\n");
/* Read dimensions of array and array values from data file. */
scanf("%*[^\n] %" NAG_IFMT "%*[^\n]", &n);
if (!(x = NAG_ALLOC(n, Complex)) || !(z = NAG_ALLOC(n, Complex)) ||
!(x_back = NAG_ALLOC(n, Complex))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
for (i = 0; i < n; ++i) {
scanf(" ( %lf, %lf )", &x[i].re, &x[i].im);
z[i] = x[i];
}
/* Compute discrete Fourier transform of complex array x using
* nag_sum_fft_complex_1d (c06pcc).
*/
nag_sum_fft_complex_1d(Nag_ForwardTransform, z, n, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sum_fft_complex_1d (c06pcc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
for (i = 0; i < n; ++i)
x_back[i] = z[i];
/* Compute inverse discrete Fourier transform of complex array z using
* nag_sum_fft_complex_1d (c06pcc).
*/
nag_sum_fft_complex_1d(Nag_BackwardTransform, x_back, n, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sum_fft_complex_1d (c06pcc).\n%s\n", fail.message);
exit_status = 2;
goto END;
}
printf("\n%2s%13s%28s%22s\n", "i", "x", "z = FFT(x)", "InvFFT(z)");
for (i = 0; i < n; i++)
printf("%2" NAG_IFMT
" (%8.5f, %8.5f ) (%8.5f, %8.5f ) (%8.5f, %8.5f )\n",
i, x[i].re, x[i].im, z[i].re, z[i].im, x_back[i].re, x_back[i].im);
END:
NAG_FREE(x);
NAG_FREE(z);
NAG_FREE(x_back);
return exit_status;
}