/* C05RB_T1W_F C++ Header Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
* Mark 28.3, 2022.
*/
#include <dco.hpp>
#include <iostream>
#include <math.h>
#include <nag.h>
#include <nagad.h>
#include <nagx02.h>
#include <nagx04.h>
#include <stdio.h>
#include <string>
using namespace std;
int main()
{
// Scalars
int exit_status = 0;
const Integer n = 7;
cout << "C05RB_T1W_F C++ Header Example Program Results\n\n";
// problem parameters and starting value
nagad_t1w_w_rtype ruser[5], x[7];
ruser[0] = -1.0;
ruser[1] = 3.0;
ruser[2] = -2.0;
ruser[3] = -2.0;
ruser[4] = -1.0;
// Create AD configuration data object
Integer ifail = 0;
nag::ad::handle_t ad_handle;
// Call AD routine
nagad_t1w_w_rtype fjac[n * n], fvec[n], xtol;
double dr[5 * n];
xtol = sqrt(X02AJC);
auto fcn = [&](nag::ad::handle_t & ad_handle,
const Integer & n,
const nagad_t1w_w_rtype *x,
nagad_t1w_w_rtype *fvec,
nagad_t1w_w_rtype *fjac,
Integer & iflag)
{
if (iflag != 2)
{
for (int i = 0; i < n; ++i)
{
fvec[i] = (ruser[1] + ruser[2] * x[i]) * x[i] - ruser[4];
}
for (int i = 1; i < n; ++i)
{
fvec[i] = fvec[i] + ruser[0] * x[i - 1];
}
for (int i = 0; i < n - 1; ++i)
{
fvec[i] = fvec[i] + ruser[3] * x[i + 1];
}
}
else
{
for (int i = 0; i < n * n; ++i)
{
fjac[i] = 0.0;
}
fjac[0] = ruser[1] + 2.0 * ruser[2] * x[0];
fjac[n] = ruser[3];
for (int i = 1; i < n - 1; ++i)
{
int k = i * n + i;
fjac[k - n] = ruser[0];
fjac[k] = ruser[1] + 2.0 * ruser[2] * x[i];
fjac[k + n] = ruser[3];
}
fjac[n * n - n - 1] = ruser[0];
fjac[n * n - 1] = ruser[1] + 2.0 * ruser[2] * x[n - 1];
}
iflag = 0;
};
for (int i = 0; i < 5; ++i)
{
for (int j = 0; j < n; ++j)
{
x[j] = -1.0;
}
dco::derivative(ruser[i]) = 0.5;
ifail = 0;
nag::ad::c05rb(ad_handle, fcn, n, x, fvec, fjac, xtol, ifail);
for (int j = 0; j < n; ++j)
{
dr[i * n + j] = 2. * dco::derivative(x[j]);
}
dco::derivative(ruser[i]) = 0.;
}
cout.setf(ios::scientific, ios::floatfield);
cout.precision(4);
cout << " Solution:\n";
for (int i = 0; i < n; ++i)
{
cout.width(10);
cout << i + 1;
cout.width(20);
cout << dco::value(x[i]) << endl;
}
cout << "\n Derivatives calculated: First order tangents\n";
cout << " Computational mode : algorithmic\n";
cout << "\n Derivatives are of solution w.r.t function params\n\n";
NagError fail;
INIT_FAIL(fail);
x04cac(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n, 5, dr, n,
" dx/druser", 0, &fail);
return exit_status;
}