Guide to the NAG Library Documentation
How to Use the NAG Library

NAG Library
Keyword and GAMS Search

 

Use the text box below to enter keywords or routine names to search the NAG Library documentation.
Please see the Guide to the NAG Documentation for details on the use of this tool.

Results found: 273

Results

Function
Name
 Details 
Reduction to standard form, generalized real symmetric-definite banded eigenproblem
Names: f01bvf; nagf_matop_real_symm_posdef_geneig
Keywords: eigenproblem, generalized; generalized eigenproblem; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4c1c
Computes selected eigenvalues and eigenvectors of a real general matrix
Names: f02ecc; nag_real_eigensystem_sel
Keywords: real, nonsymmetric matrix
GAMS: D4a2
Selected eigenvalues and eigenvectors of real nonsymmetric matrix (Black Box)
Names: f02ecf; nagf_eigen_real_gen_eigsys
Keywords: real, nonsymmetric matrix
GAMS: D4a2
Selected eigenvalues and eigenvectors of a real sparse general matrix
Names: f02ekc; nag_eigen_real_gen_sparse_arnoldi
Keywords: large scale eigenproblems; matrix, sparse; real, sparse matrix
GAMS: D4a7, D4a2
Selected eigenvalues and eigenvectors of a real sparse general matrix
Names: f02ekf; nagf_eigen_real_gen_sparse_arnoldi
Keywords: large scale eigenproblems; matrix, sparse; real, sparse matrix
GAMS: D4a7, D4a2
Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
Names: f02fjf; nagf_eigen_real_symm_sparse_eigsys
Keywords: matrix, sparse; real, sparse, symmetric matrix
GAMS: D4a7, D4b1
Selected eigenvalues and eigenvectors of a real symmetric sparse matrix
Names: f02fkc; nag_eigen_real_symm_sparse_arnoldi
Keywords: eigenproblem; eigenvalues; eigenvectors; large scale eigenproblems; matrix, sparse; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7, D4a1
Selected eigenvalues and eigenvectors of a real symmetric sparse matrix
Names: f02fkf; nagf_eigen_real_symm_sparse_arnoldi
Keywords: eigenproblem; eigenvalues; eigenvectors; large scale eigenproblems; matrix, sparse; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7, D4a1
Solves the quadratic eigenvalue problem for real matrices
Names: f02jcc; nag_eigen_real_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b2
Solves the quadratic eigenvalue problem for real matrices
Names: f02jcf; nagf_eigen_real_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b2
Computes leading terms in the singular value decomposition of a real general matrix; also computes corresponding left and right singular vectors
Names: f02wgc; nag_real_partial_svd
Keywords: real, m by n matrix; SVD, singular value decomposition
GAMS: D6
Computes leading terms in the singular value decomposition of a real general matrix; also computes corresponding left and right singular vectors
Names: f02wgf; nagf_eigen_real_gen_partialsvd
Keywords: real, m by n matrix; SVD, singular value decomposition
GAMS: D6
SVD of real upper triangular matrix (Black Box)
Names: f02wuf; nagf_eigen_real_triang_svd
Keywords: real, triangular matrix; SVD, singular value decomposition
GAMS: D6
Compute eigenvalue of 2 by 2 real symmetric matrix
Names: f06bpf; nagf_blas_deig2
Keywords: eigenvalues; elementary arithmetic
GAMS: D4a1
Solves a real linear least squares problem of full rank
Names: f08aac; nag_dgels; dgels
Keywords: DGELS; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; real, m by n matrix; underdetermined linear system
GAMS: D9a1
Solves a real linear least squares problem of full rank
Names: f08aaf; nagf_lapackeig_dgels; dgels
Keywords: DGELS; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; real, m by n matrix; underdetermined linear system
GAMS: D9a1
Performs a QR factorization of real general rectangular matrix, with explicit blocking
Names: f08abc; nag_dgeqrt; dgeqrt
Keywords: DGEQRT; explicit blocking; QR factorization; real, m by n matrix; recursive QR
GAMS: D5
Performs a QR factorization of real general rectangular matrix, with explicit blocking
Names: f08abf; nagf_lapackeig_dgeqrt; dgeqrt
Keywords: DGEQRT; explicit blocking; QR factorization; real, m by n matrix; recursive QR
GAMS: D5
Performs a QR factorization of real general rectangular matrix
Names: f08aec; nag_dgeqrf; dgeqrf
Keywords: DGEQRF; finance; LAPACK; QR factorization; real, m by n matrix
GAMS: D5
Performs a QR factorization of real general rectangular matrix
Names: f08aef; nagf_lapackeig_dgeqrf; dgeqrf
Keywords: DGEQRF; finance; LAPACK; QR factorization; real, m by n matrix
GAMS: D5
First order adjoint: Performs a QR factorization of real general rectangular matrix
Keywords: adjoint; algorithmic differentiation; automatic differentiation; AD; dco; DGEQRF; finance; LAPACK; QR factorization; real, m by n matrix
GAMS: D5
Performs a LQ factorization of real general rectangular matrix
Names: f08ahc; nag_dgelqf; dgelqf
Keywords: DGELQF; LAPACK; LQ factorization; real, m by n matrix
GAMS: D5
Performs a LQ factorization of real general rectangular matrix
Names: f08ahf; nagf_lapackeig_dgelqf; dgelqf
Keywords: DGELQF; LAPACK; LQ factorization; real, m by n matrix
GAMS: D5
First order adjoint: Performs a LQ factorization of real general rectangular matrix
Keywords: adjoint; algorithmic differentiation; automatic differentiation; AD; dco; DGELQF; LAPACK; LQ factorization; real, m by n matrix
GAMS: D5
Computes the minimum-norm solution to a real linear least squares problem
Names: f08bac; nag_dgelsy; dgelsy
Keywords: DGELSY; finance; LAPACK; linear least squares; minimal least squares; real, m by n matrix
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem
Names: f08baf; nagf_lapackeig_dgelsy; dgelsy
Keywords: DGELSY; finance; LAPACK; linear least squares; minimal least squares; real, m by n matrix
GAMS: D9a1
QR factorization of real general triangular-pentagonal matrix
Names: f08bbc; nag_dtpqrt; dtpqrt
Keywords: DTPQRT; explicit blocking; QR factorization; real, triangular-pentagonal matrix; recursive QR
GAMS: D5
QR factorization of real general triangular-pentagonal matrix
Names: f08bbf; nagf_lapackeig_dtpqrt; dtpqrt
Keywords: DTPQRT; explicit blocking; QR factorization; real, triangular-pentagonal matrix; recursive QR
GAMS: D5
QR factorization, with column pivoting, of real general rectangular matrix
Names: f08bec; nag_dgeqpf; dgeqpf
Keywords: DGEQPF; finance; LAPACK; orthogonal transformations; QR factorization; real, m by n matrix
GAMS: D5
QR factorization, with column pivoting, of real general rectangular matrix
Names: f08bef; nagf_lapackeig_dgeqpf; dgeqpf
Keywords: DGEQPF; finance; LAPACK; orthogonal transformations; QR factorization; real, m by n matrix
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of real general rectangular matrix
Names: f08bfc; nag_dgeqp3; dgeqp3
Keywords: DGEQP3; finance; LAPACK; orthogonal transformations; QR factorization; real, m by n matrix
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of real general rectangular matrix
Names: f08bff; nagf_lapackeig_dgeqp3; dgeqp3
Keywords: DGEQP3; finance; LAPACK; orthogonal transformations; QR factorization; real, m by n matrix
GAMS: D5
Reduces a real upper trapezoidal matrix to upper triangular form
Names: f08bhc; nag_dtzrzf; dtzrzf
Keywords: DTZRZF; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; orthogonal transformations; real, trapezoidal matrix
GAMS: D5
Reduces a real upper trapezoidal matrix to upper triangular form
Names: f08bhf; nagf_lapackeig_dtzrzf; dtzrzf
Keywords: DTZRZF; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; orthogonal transformations; real, trapezoidal matrix
GAMS: D5
QL factorization of real general rectangular matrix
Names: f08cec; nag_dgeqlf; dgeqlf
Keywords: DGEQLF; LAPACK; QL factorization; real, m by n matrix
GAMS: D5
QL factorization of real general rectangular matrix
Names: f08cef; nagf_lapackeig_dgeqlf; dgeqlf
Keywords: DGEQLF; LAPACK; QL factorization; real, m by n matrix
GAMS: D5
RQ factorization of real general rectangular matrix
Names: f08chc; nag_dgerqf; dgerqf
Keywords: DGERQF; LAPACK; real, m by n matrix; RQ factorizations
GAMS: D5
RQ factorization of real general rectangular matrix
Names: f08chf; nagf_lapackeig_dgerqf; dgerqf
Keywords: DGERQF; LAPACK; real, m by n matrix; RQ factorizations
GAMS: D5
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fac; nag_dsyev; dsyev
Keywords: DSYEV; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08faf; nagf_lapackeig_dsyev; dsyev
Keywords: DSYEV; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fbc; nag_dsyevx; dsyevx
Keywords: DSYEVX; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fbf; nagf_lapackeig_dsyevx; dsyevx
Keywords: DSYEVX; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix (divide-and-conquer)
Names: f08fcc; nag_dsyevd; dsyevd
Keywords: divide-and-conquer method; DSYEVD; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix (divide-and-conquer)
Names: f08fcf; nagf_lapackeig_dsyevd; dsyevd
Keywords: divide-and-conquer method; DSYEVD; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix (divide-and-conquer)
Names: f08fc; nagcpp::lapackeig::dsyevd
Keywords: divide-and-conquer method; DSYEVD; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix (Relatively Robust Representations)
Names: f08fdc; nag_dsyevr; dsyevr
Keywords: dqds algorithm; DSYEVR; eigenvalues; eigenvectors; LAPACK; real, indefinite, symmetric matrix; relatively robust representations
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix (Relatively Robust Representations)
Names: f08fdf; nagf_lapackeig_dsyevr; dsyevr
Keywords: dqds algorithm; DSYEVR; eigenvalues; eigenvectors; LAPACK; real, indefinite, symmetric matrix; relatively robust representations
GAMS: D4a1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
Names: f08fec; nag_dsytrd; dsytrd
Keywords: DSYTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
Names: f08fef; nagf_lapackeig_dsytrd; dsytrd
Keywords: DSYTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Computes the reciprocal condition numbers for the eigenvectors of a real symmetric or complex Hermitian matrix or for the left or right singular vectors of a general matrix
Names: f08flc; nag_ddisna; ddisna
Keywords: complex, Hermitian, indefinite matrix; condition number, matrix; DDISNA; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4c, D6
Computes the reciprocal condition numbers for the eigenvectors of a real symmetric or complex Hermitian matrix or for the left or right singular vectors of a general matrix
Names: f08flf; nagf_lapackeig_ddisna; ddisna
Keywords: complex, Hermitian, indefinite matrix; condition number, matrix; DDISNA; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4c, D6
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
Names: f08fsc; nag_zhetrd; zhetrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHETRD
GAMS: D4c1b1
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
Names: f08fsf; nagf_lapackeig_zhetrd; zhetrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHETRD
GAMS: D4c1b1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gac; nag_dspev; dspev
Keywords: DSPEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gaf; nagf_lapackeig_dspev; dspev
Keywords: DSPEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, indefinite, symmetric matrix
GAMS: D4a1
First order adjoint: Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Keywords: adjoint; algorithmic differentiation; automatic differentiation; AD; dco; DSPEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gbc; nag_dspevx; dspevx
Keywords: DSPEVX; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gbf; nagf_lapackeig_dspevx; dspevx
Keywords: DSPEVX; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gcc; nag_dspevd; dspevd
Keywords: divide-and-conquer method; DSPEVD; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan ( QL or QR) algorithm; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gcf; nagf_lapackeig_dspevd; dspevd
Keywords: divide-and-conquer method; DSPEVD; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan ( QL or QR) algorithm; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
Names: f08gec; nag_dsptrd; dsptrd
Keywords: DSPTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
Names: f08gef; nagf_lapackeig_dsptrd; dsptrd
Keywords: DSPTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Performs a unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage
Names: f08gsc; nag_zhptrd; zhptrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHPTRD
GAMS: D4c1b1
Performs a unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage
Names: f08gsf; nagf_lapackeig_zhptrd; zhptrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHPTRD
GAMS: D4c1b1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hac; nag_dsbev; dsbev
Keywords: DSBEV; LAPACK; matrix, band; QR algorithm; real, band, symmetric matrix
GAMS: D4a6
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08haf; nagf_lapackeig_dsbev; dsbev
Keywords: DSBEV; LAPACK; matrix, band; QR algorithm; real, band, symmetric matrix
GAMS: D4a6
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hbc; nag_dsbevx; dsbevx
Keywords: DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; real, band, symmetric matrix
GAMS: D4a6
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hbf; nagf_lapackeig_dsbevx; dsbevx
Keywords: DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; real, band, symmetric matrix
GAMS: D4a6
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric band matrix (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08hcc; nag_dsbevd; dsbevd
Keywords: divide-and-conquer method; DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan ( QL or QR) algorithm; real, band, symmetric matrix
GAMS: D4a1, D4a6
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric band matrix (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08hcf; nagf_lapackeig_dsbevd; dsbevd
Keywords: divide-and-conquer method; DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan ( QL or QR) algorithm; real, band, symmetric matrix
GAMS: D4a1, D4a6
Performs an orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
Names: f08hec; nag_dsbtrd; dsbtrd
Keywords: DSBTRD; LAPACK; matrix, band; orthogonal transformations; real, band, symmetric matrix
GAMS: D4c1b1
Performs an orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
Names: f08hef; nagf_lapackeig_dsbtrd; dsbtrd
Keywords: DSBTRD; LAPACK; matrix, band; orthogonal transformations; real, band, symmetric matrix
GAMS: D4c1b1
Performs a unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
Names: f08hsc; nag_zhbtrd; zhbtrd
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBTRD
GAMS: D4c1b1
Performs a unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
Names: f08hsf; nagf_lapackeig_zhbtrd; zhbtrd
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBTRD
GAMS: D4c1b1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jac; nag_dstev; dstev
Keywords: DSTEV; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jaf; nagf_lapackeig_dstev; dstev
Keywords: DSTEV; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jbc; nag_dstevx; dstevx
Keywords: bisection method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jbf; nagf_lapackeig_dstevx; dstevx
Keywords: bisection method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric tridiagonal matrix (divide-and-conquer)
Names: f08jcc; nag_dstevd; dstevd
Keywords: divide-and-conquer method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan ( QL or QR) algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric tridiagonal matrix (divide-and-conquer)
Names: f08jcf; nagf_lapackeig_dstevd; dstevd
Keywords: divide-and-conquer method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan ( QL or QR) algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix (Relatively Robust Representations)
Names: f08jdc; nag_dstevr; dstevr
Keywords: dqds algorithm; DSTEVR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix (Relatively Robust Representations)
Names: f08jdf; nagf_lapackeig_dstevr; dstevr
Keywords: dqds algorithm; DSTEVR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using the implicit QL or QR algorithm
Names: f08jec; nag_dsteqr; dsteqr
Keywords: DSTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using the implicit QL or QR algorithm
Names: f08jef; nagf_lapackeig_dsteqr; dsteqr
Keywords: DSTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues of real symmetric tridiagonal matrix, root-free variant of the QL or QR algorithm
Names: f08jfc; nag_dsterf; dsterf
Keywords: DSTERF; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues of real symmetric tridiagonal matrix, root-free variant of the QL or QR algorithm
Names: f08jff; nagf_lapackeig_dsterf; dsterf
Keywords: DSTERF; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from real symmetric positive definite matrix
Names: f08jgc; nag_dpteqr; dpteqr
Keywords: DPTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from real symmetric positive definite matrix
Names: f08jgf; nagf_lapackeig_dpteqr; dpteqr
Keywords: DPTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a matrix reduced to this form (divide-and-conquer)
Names: f08jhc; nag_dstedc; dstedc
Keywords: divide-and-conquer method; DSTEDC; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a matrix reduced to this form (divide-and-conquer)
Names: f08jhf; nagf_lapackeig_dstedc; dstedc
Keywords: divide-and-conquer method; DSTEDC; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues of real symmetric tridiagonal matrix by bisection
Names: f08jjc; nag_dstebz; dstebz
Keywords: bisection method; DSTEBZ; eigenvalues; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues of real symmetric tridiagonal matrix by bisection
Names: f08jjf; nagf_lapackeig_dstebz; dstebz
Keywords: bisection method; DSTEBZ; eigenvalues; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
Names: f08jkc; nag_dstein; dstein
Keywords: DSTEIN; eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
Names: f08jkf; nagf_lapackeig_dstein; dstein
Keywords: DSTEIN; eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a symmetric matrix reduced to this form (Relatively Robust Representations)
Names: f08jlc; nag_dstegr; dstegr
Keywords: dqds algorithm; DSTEGR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5, D4c2a
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a symmetric matrix reduced to this form (Relatively Robust Representations)
Names: f08jlf; nagf_lapackeig_dstegr; dstegr
Keywords: dqds algorithm; DSTEGR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using the implicit QL or QR algorithm
Names: f08jsc; nag_zsteqr; zsteqr
Keywords: eigenvalues; eigenvectors; LAPACK; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEQR
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using the implicit QL or QR algorithm
Names: f08jsf; nagf_lapackeig_zsteqr; zsteqr
Keywords: eigenvalues; eigenvectors; LAPACK; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEQR
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from complex Hermitian positive definite matrix
Names: f08juc; nag_zpteqr; zpteqr
Keywords: eigenvalues; eigenvectors; LAPACK; LDLH decomposition; real, symmetric, tridiagonal matrix; ZPTEQR
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from complex Hermitian positive definite matrix
Names: f08juf; nagf_lapackeig_zpteqr; zpteqr
Keywords: eigenvalues; eigenvectors; LAPACK; LDLH decomposition; real, symmetric, tridiagonal matrix; ZPTEQR
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (divide-and-conquer)
Names: f08jvc; nag_zstedc; zstedc
Keywords: divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEDC
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (divide-and-conquer)
Names: f08jvf; nagf_lapackeig_zstedc; zstedc
Keywords: divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEDC
GAMS: D4c2a, D4a5, D4a3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
Names: f08jxc; nag_zstein; zstein
Keywords: eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; ZSTEIN
GAMS: D4c3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
Names: f08jxf; nagf_lapackeig_zstein; zstein
Keywords: eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; ZSTEIN
GAMS: D4c3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (Relatively Robust Representations)
Names: f08jyc; nag_zstegr; zstegr
Keywords: dqds algorithm; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations; ZSTEGR
GAMS: D4c2a, D4a5, D4a3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (Relatively Robust Representations)
Names: f08jyf; nagf_lapackeig_zstegr; zstegr
Keywords: dqds algorithm; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations; ZSTEGR
GAMS: D4c2a, D4a5, D4a3
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition
Names: f08kac; nag_dgelss; dgelss
Keywords: DGELSS; LAPACK; linear least squares; minimal least squares; real, m by n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition
Names: f08kaf; nagf_lapackeig_dgelss; dgelss
Keywords: DGELSS; LAPACK; linear least squares; minimal least squares; real, m by n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f08kbc; nag_dgesvd; dgesvd
Keywords: DGESVD; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f08kbf; nagf_lapackeig_dgesvd; dgesvd
Keywords: DGESVD; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kcc; nag_dgelsd; dgelsd
Keywords: DGELSD; divide-and-conquer method; finance; LAPACK; linear least squares; minimal least squares; real, m by n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kcf; nagf_lapackeig_dgelsd; dgelsd
Keywords: DGELSD; divide-and-conquer method; finance; LAPACK; linear least squares; minimal least squares; real, m by n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08kdc; nag_dgesdd; dgesdd
Keywords: DGESDD; divide-and-conquer method; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08kdf; nagf_lapackeig_dgesdd; dgesdd
Keywords: DGESDD; divide-and-conquer method; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
First order adjoint: Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Keywords: adjoint; algorithmic differentiation; automatic differentiation; AD; dco; symbolic adjoint; DGESDD; divide-and-conquer method; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Performs an orthogonal reduction of real general rectangular matrix to bidiagonal form
Names: f08kec; nag_dgebrd; dgebrd
Keywords: DGEBRD; LAPACK; orthogonal transformations; real, m by n matrix
GAMS: D6
Performs an orthogonal reduction of real general rectangular matrix to bidiagonal form
Names: f08kef; nagf_lapackeig_dgebrd; dgebrd
Keywords: DGEBRD; LAPACK; orthogonal transformations; real, m by n matrix
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08khc; nag_dgejsv; dgejsv
Keywords: DGEJSV; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08khf; nagf_lapackeig_dgejsv; dgejsv
Keywords: DGEJSV; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kjc; nag_dgesvj; dgesvj
Keywords: DGESVJ; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kjf; nagf_lapackeig_dgesvj; dgesvj
Keywords: DGESVJ; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kmc; nag_dgesvdx; dgesvdx
Keywords: DGESVDX; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kmf; nagf_lapackeig_dgesvdx; dgesvdx
Keywords: DGESVDX; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition; TGK
GAMS: D6
Performs a reduction of real rectangular band matrix to upper bidiagonal form
Names: f08lec; nag_dgbbrd; dgbbrd
Keywords: DGBBRD; Givens rotations; LAPACK; matrix, band; real, band, m by n matrix
GAMS: D4c1b3
Performs a reduction of real rectangular band matrix to upper bidiagonal form
Names: f08lef; nagf_lapackeig_dgbbrd; dgbbrd
Keywords: DGBBRD; Givens rotations; LAPACK; matrix, band; real, band, m by n matrix
GAMS: D4c1b3
Reduction of complex rectangular band matrix to upper bidiagonal form
Names: f08lsc; nag_zgbbrd; zgbbrd
Keywords: Givens rotations; LAPACK; matrix, band; real, band, m by n matrix; ZGBBRD
GAMS: D4c1b3
Reduction of complex rectangular band matrix to upper bidiagonal form
Names: f08lsf; nagf_lapackeig_zgbbrd; zgbbrd
Keywords: Givens rotations; LAPACK; matrix, band; real, band, m by n matrix; ZGBBRD
GAMS: D4c1b3
Computes all or selected singular values of the singular value decomposition of a real square bidiagonal matrix, optionally computing the corresponding left and right singular vectors
Names: f08mbc; nag_dbdsvdx; dbdsvdx
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real square bidiagonal matrix, optionally computing the corresponding left and right singular vectors
Names: f08mbf; nagf_lapackeig_dbdsvdx; dbdsvdx
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes the singular value decomposition of a real bidiagonal matrix, optionally computing the singular vectors (divide-and-conquer)
Names: f08mdc; nag_dbdsdc; dbdsdc
Keywords: DBDSDC; divide-and-conquer method; LAPACK; matrix, band; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real bidiagonal matrix, optionally computing the singular vectors (divide-and-conquer)
Names: f08mdf; nagf_lapackeig_dbdsdc; dbdsdc
Keywords: DBDSDC; divide-and-conquer method; LAPACK; matrix, band; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from real general matrix
Names: f08mec; nag_dbdsqr; dbdsqr
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from real general matrix
Names: f08mef; nagf_lapackeig_dbdsqr; dbdsqr
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from complex general matrix
Names: f08msc; nag_zbdsqr; zbdsqr
Keywords: differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; ZBDSQR
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from complex general matrix
Names: f08msf; nagf_lapackeig_zbdsqr; zbdsqr
Keywords: differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; ZBDSQR
GAMS: D6
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix
Names: f08nac; nag_dgeev; dgeev
Keywords: DGEEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix
Names: f08naf; nagf_lapackeig_dgeev; dgeev
Keywords: DGEEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08nbc; nag_dgeevx; dgeevx
Keywords: balancing; condition number, matrix; DGEEVX; eigenvalues; eigenvectors; finance; forward error; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08nbf; nagf_lapackeig_dgeevx; dgeevx
Keywords: balancing; condition number, matrix; DGEEVX; eigenvalues; eigenvectors; finance; forward error; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Performs an orthogonal reduction of real general matrix to upper Hessenberg form
Names: f08nec; nag_dgehrd; dgehrd
Keywords: DGEHRD; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4c1b2
Performs an orthogonal reduction of real general matrix to upper Hessenberg form
Names: f08nef; nagf_lapackeig_dgehrd; dgehrd
Keywords: DGEHRD; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4c1b2
Balances a real general matrix
Names: f08nhc; nag_dgebal; dgebal
Keywords: balancing; DGEBAL; LAPACK; real, nonsymmetric matrix
GAMS: D4c1a
Balances a real general matrix
Names: f08nhf; nagf_lapackeig_dgebal; dgebal
Keywords: balancing; DGEBAL; LAPACK; real, nonsymmetric matrix
GAMS: D4c1a
Transforms eigenvectors of real balanced matrix to those of original matrix supplied to f08nhc
Names: f08njc; nag_dgebak; dgebak
Keywords: balancing; DGEBAK; eigenvectors; LAPACK; real, nonsymmetric matrix
GAMS: D4c4
Transforms eigenvectors of real balanced matrix to those of original matrix supplied to f08nhf
Names: f08njf; nagf_lapackeig_dgebak; dgebak
Keywords: balancing; DGEBAK; eigenvectors; LAPACK; real, nonsymmetric matrix
GAMS: D4c4
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors
Names: f08pac; nag_dgees; dgees
Keywords: DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors
Names: f08paf; nagf_lapackeig_dgees; dgees
Keywords: DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08pbc; nag_dgeesx; dgeesx
Keywords: condition number, matrix; DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08pbf; nagf_lapackeig_dgeesx; dgeesx
Keywords: condition number, matrix; DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes the eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
Names: f08pec; nag_dhseqr; dhseqr
Keywords: DHSEQR; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form
GAMS: D4c2b
Computes the eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
Names: f08pef; nagf_lapackeig_dhseqr; dhseqr
Keywords: DHSEQR; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form
GAMS: D4c2b
Computes selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
Names: f08pkc; nag_dhsein; dhsein
Keywords: DHSEIN; eigenvectors; inverse iteration; LAPACK; real, Hessenberg matrix
GAMS: D4c3
Computes selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
Names: f08pkf; nagf_lapackeig_dhsein; dhsein
Keywords: DHSEIN; eigenvectors; inverse iteration; LAPACK; real, Hessenberg matrix
GAMS: D4c3
Computes for real square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors; also computes a reciprocal condition number for the average of the selected eigenvalues and for the right invariant subspace corresponding to these eigenvalues
Names: f08ppc; nag_zgeesx; zgeesx
Keywords: condition number, matrix; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors; ZGEESX
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors; also computes a reciprocal condition number for the average of the selected eigenvalues and for the right invariant subspace corresponding to these eigenvalues
Names: f08ppf; nagf_lapackeig_zgeesx; zgeesx
Keywords: condition number, matrix; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors; ZGEESX
GAMS: D4a2
Reorders a Schur factorization of real matrix using orthogonal similarity transformation
Names: f08qfc; nag_dtrexc; dtrexc
Keywords: DTREXC; LAPACK; orthogonal transformations; real, nonsymmetric matrix; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix using orthogonal similarity transformation
Names: f08qff; nagf_lapackeig_dtrexc; dtrexc
Keywords: DTREXC; LAPACK; orthogonal transformations; real, nonsymmetric matrix; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08qgc; nag_dtrsen; dtrsen
Keywords: condition number, matrix; DTREXC; LAPACK; orthogonal transformations; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08qgf; nagf_lapackeig_dtrsen; dtrsen
Keywords: condition number, matrix; DTREXC; LAPACK; orthogonal transformations; Schur form
GAMS: D4c
Solves the real Sylvester matrix equation , A and B are upper quasi-triangular or transposes
Names: f08qhc; nag_dtrsyl; dtrsyl
Keywords: DTRSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Solves the real Sylvester matrix equation , A and B are upper quasi-triangular or transposes
Names: f08qhf; nagf_lapackeig_dtrsyl; dtrsyl
Keywords: DTRSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Computes left and right eigenvectors of real upper quasi-triangular matrix
Names: f08qkc; nag_dtrevc; dtrevc
Keywords: DTREVC; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c3
Computes left and right eigenvectors of real upper quasi-triangular matrix
Names: f08qkf; nagf_lapackeig_dtrevc; dtrevc
Keywords: DTREVC; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c3
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
Names: f08qlc; nag_dtrsna; dtrsna
Keywords: condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
Names: f08qlf; nagf_lapackeig_dtrsna; dtrsna
Keywords: condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c
Computes the CS decomposition of an orthogonal matrix partitioned into four real submatrices
Names: f08rac; nag_dorcsd; dorcsd
Keywords: complete CS decomposition; DORCSD; GSVD, generalized singular value decomposition; LAPACK; real, orthogonal matrix
GAMS: D6
Computes the CS decomposition of an orthogonal matrix partitioned into four real submatrices
Names: f08raf; nagf_lapackeig_dorcsd; dorcsd
Keywords: complete CS decomposition; DORCSD; GSVD, generalized singular value decomposition; LAPACK; real, orthogonal matrix
GAMS: D6
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sac; nag_dsygv; dsygv
Keywords: DSYGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08saf; nagf_lapackeig_dsygv; dsygv
Keywords: DSYGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sbc; nag_dsygvx; dsygvx
Keywords: DSYGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sbf; nagf_lapackeig_dsygvx; dsygvx
Keywords: DSYGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08scc; nag_dsygvd; dsygvd
Keywords: divide-and-conquer method; DSYGVD; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08scf; nagf_lapackeig_dsygvd; dsygvd
Keywords: divide-and-conquer method; DSYGVD; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem , or , B factorized by f07fdc
Names: f08sec; nag_dsygst; dsygst
Keywords: DSYGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1c
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem , or , B factorized by f07fdf
Names: f08sef; nagf_lapackeig_dsygst; dsygst
Keywords: DSYGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1c
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tac; nag_dspgv; dspgv
Keywords: DSPGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08taf; nagf_lapackeig_dspgv; dspgv
Keywords: DSPGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tbc; nag_dspgvx; dspgvx
Keywords: DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tbf; nagf_lapackeig_dspgvx; dspgvx
Keywords: DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tcc; nag_dspgvd; dspgvd
Keywords: divide-and-conquer method; DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tcf; nagf_lapackeig_dspgvd; dspgvd
Keywords: divide-and-conquer method; DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem , or , packed storage, B factorized by f07gdc
Names: f08tec; nag_dspgst; dspgst
Keywords: DSPGVX; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1c
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem , or , packed storage, B factorized by f07gdf
Names: f08tef; nagf_lapackeig_dspgst; dspgst
Keywords: DSPGVX; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1c
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08uac; nag_dsbgv; dsbgv
Keywords: DSBGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08uaf; nagf_lapackeig_dsbgv; dsbgv
Keywords: DSBGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08ubc; nag_dsbgvx; dsbgvx
Keywords: DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08ubf; nagf_lapackeig_dsbgvx; dsbgvx
Keywords: DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08ucc; nag_dsbgvd; dsbgvd
Keywords: divide-and-conquer method; DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08ucf; nagf_lapackeig_dsbgvd; dsbgvd
Keywords: divide-and-conquer method; DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Performs a reduction of real symmetric-definite banded generalized eigenproblem to standard form , such that C has the same bandwidth as A
Names: f08uec; nag_dsbgst; dsbgst
Keywords: DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4c1c
Performs a reduction of real symmetric-definite banded generalized eigenproblem to standard form , such that C has the same bandwidth as A
Names: f08uef; nagf_lapackeig_dsbgst; dsbgst
Keywords: DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4c1c
Computes a split Cholesky factorization of real symmetric positive definite band matrix A
Names: f08ufc; nag_dpbstf; dpbstf
Keywords: Cholesky decomposition; DPBSTF; DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes a split Cholesky factorization of real symmetric positive definite band matrix A
Names: f08uff; nagf_lapackeig_dpbstf; dpbstf
Keywords: Cholesky decomposition; DPBSTF; DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes a split Cholesky factorization of complex Hermitian positive definite band matrix A
Names: f08utc; nag_zpbstf; zpbstf
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; Split Cholesky factorization; ZPBSTF
GAMS: D2b2
Computes a split Cholesky factorization of complex Hermitian positive definite band matrix A
Names: f08utf; nagf_lapackeig_zpbstf; zpbstf
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; Split Cholesky factorization; ZPBSTF
GAMS: D2b2
Computes the generalized singular value decomposition of a real matrix pair
Names: f08vac; nag_dggsvd; dggsvd
Keywords: DGGSVD; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes the generalized singular value decomposition of a real matrix pair
Names: f08vaf; nagf_lapackeig_dggsvd; dggsvd
Keywords: DGGSVD; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a real matrix pair
Names: f08vcc; nag_dggsvd3; dggsvd3
Keywords: DGGSVD3; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a real matrix pair
Names: f08vcf; nagf_lapackeig_dggsvd3; dggsvd3
Keywords: DGGSVD3; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices that simultaneously reduce the m by n matrix A and the p by n matrix B to upper triangular form
Names: f08vec; nag_dggsvp; dggsvp
Keywords: DGGSVP; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m by n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices that simultaneously reduce the m by n matrix A and the p by n matrix B to upper triangular form
Names: f08vef; nagf_lapackeig_dggsvp; dggsvp
Keywords: DGGSVP; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m by n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices, using BLAS-3, that simultaneously reduce the m by n matrix A and the p by n matrix B to upper triangular form
Names: f08vgc; nag_dggsvp3; dggsvp3
Keywords: DGGSVP3; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m by n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices, using BLAS-3, that simultaneously reduce the m by n matrix A and the p by n matrix B to upper triangular form
Names: f08vgf; nagf_lapackeig_dggsvp3; dggsvp3
Keywords: DGGSVP3; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m by n matrix; SVD, generalized
GAMS: D6
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wac; nag_dggev; dggev
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08waf; nagf_lapackeig_dggev; dggev
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wbc; nag_dggevx; dggevx
Keywords: balancing; condition number, matrix; DGGEVX; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wbf; nagf_lapackeig_dggevx; dggevx
Keywords: balancing; condition number, matrix; DGGEVX; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wcc; nag_dggev3; dggev3
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wcf; nagf_lapackeig_dggev3; dggev3
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Performs an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wec; nag_dgghrd; dgghrd
Keywords: DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wef; nagf_lapackeig_dgghrd; dgghrd
Keywords: DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs, using BLAS-3, an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wfc; nag_dgghd3; dgghd3
Keywords: DGGHD3; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs, using BLAS-3, an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wff; nagf_lapackeig_dgghd3; dgghd3
Keywords: DGGHD3; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Balances a pair of real, square, matrices
Names: f08whc; nag_dggbal; dggbal
Keywords: balancing; DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK
GAMS: D4b2
Balances a pair of real, square, matrices
Names: f08whf; nagf_lapackeig_dggbal; dggbal
Keywords: balancing; DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK
GAMS: D4b2
Transforms eigenvectors of a pair of real balanced matrices to those of original matrix pair supplied to f08whc
Names: f08wjc; nag_dggbak; dggbak
Keywords: balancing; DGGBAK; eigenproblem, generalized; eigenvectors; generalized eigenproblem; LAPACK
GAMS: D4b2
Transforms eigenvectors of a pair of real balanced matrices to those of original matrix pair supplied to f08whf
Names: f08wjf; nagf_lapackeig_dggbak; dggbak
Keywords: balancing; DGGBAK; eigenproblem, generalized; eigenvectors; generalized eigenproblem; LAPACK
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xac; nag_dgges; dgges
Keywords: DGGES; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xaf; nagf_lapackeig_dgges; dgges
Keywords: DGGES; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xbc; nag_dggesx; dggesx
Keywords: condition number, matrix; DGGESX; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xbf; nagf_lapackeig_dggesx; dggesx
Keywords: condition number, matrix; DGGESX; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xcc; nag_dgges3; dgges3
Keywords: DGGES3; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xcf; nagf_lapackeig_dgges3; dgges3
Keywords: DGGES3; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes eigenvalues and generalized Schur factorization of real generalized upper Hessenberg form reduced from a pair of real general matrices
Names: f08xec; nag_dhgeqz; dhgeqz
Keywords: DHGEQZ; eigenvalues; generalized Schur form; LAPACK; real, Hessenberg matrix
GAMS: D4b2
Computes eigenvalues and generalized Schur factorization of real generalized upper Hessenberg form reduced from a pair of real general matrices
Names: f08xef; nagf_lapackeig_dhgeqz; dhgeqz
Keywords: DHGEQZ; eigenvalues; generalized Schur form; LAPACK; real, Hessenberg matrix
GAMS: D4b2
Computes the generalized singular value decomposition of a real upper triangular (or trapezoidal) matrix pair
Names: f08yec; nag_dtgsja; dtgsja
Keywords: DTGSJA; GSVD, generalized singular value decomposition; LAPACK; real, trapezoidal matrix; real, triangular matrix; SVD, generalized
GAMS: D6
Computes the generalized singular value decomposition of a real upper triangular (or trapezoidal) matrix pair
Names: f08yef; nagf_lapackeig_dtgsja; dtgsja
Keywords: DTGSJA; GSVD, generalized singular value decomposition; LAPACK; real, trapezoidal matrix; real, triangular matrix; SVD, generalized
GAMS: D6
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation
Names: f08yfc; nag_dtgexc; dtgexc
Keywords: DTGEXC; generalized Schur form; LAPACK; orthogonal transformations
GAMS: D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation
Names: f08yff; nagf_lapackeig_dtgexc; dtgexc
Keywords: DTGEXC; generalized Schur form; LAPACK; orthogonal transformations
GAMS: D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08ygc; nag_dtgsen; dtgsen
Keywords: condition number, matrix; DTGSEN; eigenvalues; generalized Schur form; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b, D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08ygf; nagf_lapackeig_dtgsen; dtgsen
Keywords: condition number, matrix; DTGSEN; eigenvalues; generalized Schur form; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b, D4c
Solves the real-valued, generalized, quasi-trangular, Sylvester equation
Names: f08yhc; nag_dtgsyl; dtgsyl
Keywords: DTGSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Solves the real-valued, generalized, quasi-trangular, Sylvester equation
Names: f08yhf; nagf_lapackeig_dtgsyl; dtgsyl
Keywords: DTGSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Computes right and left generalized eigenvectors of the matrix pair which is assumed to be in generalized upper Schur form
Names: f08ykc; nag_dtgevc; dtgevc
Keywords: DTGEVC; eigenvectors; generalized Schur form; LAPACK
GAMS: D4b2
Computes right and left generalized eigenvectors of the matrix pair which is assumed to be in generalized upper Schur form
Names: f08ykf; nagf_lapackeig_dtgevc; dtgevc
Keywords: DTGEVC; eigenvectors; generalized Schur form; LAPACK
GAMS: D4b2
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a real matrix pair in generalized real Schur canonical form
Names: f08ylc; nag_dtgsna; dtgsna
Keywords: condition number, matrix; DTGSNA; generalized Schur form; LAPACK; real, nonsymmetric matrix
GAMS: D4c
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a real matrix pair in generalized real Schur canonical form
Names: f08ylf; nagf_lapackeig_dtgsna; dtgsna
Keywords: condition number, matrix; DTGSNA; generalized Schur form; LAPACK; real, nonsymmetric matrix
GAMS: D4c
Solves the real linear equality-constrained least squares (LSE) problem
Names: f08zac; nag_dgglse; dgglse
Keywords: DGGLSE; LAPACK; linear least squares; real, m by n matrix; RQ factorizations
GAMS: D9b1
Solves the real linear equality-constrained least squares (LSE) problem
Names: f08zaf; nagf_lapackeig_dgglse; dgglse
Keywords: DGGLSE; LAPACK; linear least squares; real, m by n matrix; RQ factorizations
GAMS: D9b1
Solves a real general Gauss–Markov linear model (GLM) problem
Names: f08zbc; nag_dggglm; dggglm
Keywords: DGGGLM; Gauss–Markov linear model; LAPACK; QR factorization; real, m by n matrix
GAMS: D9b1
Solves a real general Gauss–Markov linear model (GLM) problem
Names: f08zbf; nagf_lapackeig_dggglm; dggglm
Keywords: DGGGLM; Gauss–Markov linear model; LAPACK; QR factorization; real, m by n matrix
GAMS: D9b1
Computes a generalized QR factorization of a real matrix pair
Names: f08zec; nag_dggqrf; dggqrf
Keywords: DGGQRF; LAPACK; QR factorization; real, m by n matrix
GAMS: D5
Computes a generalized QR factorization of a real matrix pair
Names: f08zef; nagf_lapackeig_dggqrf; dggqrf
Keywords: DGGQRF; LAPACK; QR factorization; real, m by n matrix
GAMS: D5
Computes a generalized RQ factorization of a real matrix pair
Names: f08zfc; nag_dggrqf; dggrqf
Keywords: DGGRQF; LAPACK; real, m by n matrix; RQ factorizations
GAMS: D5
Computes a generalized RQ factorization of a real matrix pair
Names: f08zff; nagf_lapackeig_dggrqf; dggrqf
Keywords: DGGRQF; LAPACK; real, m by n matrix; RQ factorizations
GAMS: D5
Initialization routine for (f12abc) computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse (standard or generalized) eigenproblem
Names: f12aac; nag_real_sparse_eigensystem_init
Keywords: eigenproblem; eigenproblem, initialization; real, sparse matrix
GAMS: D4c1b3
Initialization routine for (f12abf) computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse (standard or generalized) eigenproblem
Names: f12aaf; nagf_sparseig_real_init
Keywords: eigenproblem; eigenproblem, initialization; real, sparse matrix
GAMS: D4c1b3
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, reverse communication
Names: f12abc; nag_real_sparse_eigensystem_iter
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, reverse communication
Names: f12abf; nagf_sparseig_real_iter
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, postprocessing for f12abc
Names: f12acc; nag_real_sparse_eigensystem_sol
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, postprocessing for f12abf
Names: f12acf; nagf_sparseig_real_proc
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Set a single option from a string (f12abc/f12acc/f12agc)
Names: f12adc; nag_real_sparse_eigensystem_option
Keywords: real, sparse matrix; sparse eigenproblem, options
GAMS: D4c1b3
Set a single option from a string (f12abf/f12acf/f12agf)
Names: f12adf; nagf_sparseig_real_option
Keywords: real, sparse matrix; sparse eigenproblem, options
GAMS: D4c1b3
Provides monitoring information for f12abc
Names: f12aec; nag_real_sparse_eigensystem_monit
Keywords: eigenproblem; monitoring information; real, sparse matrix; sparse eigenproblems, monitoring
GAMS: D4c1b3
Provides monitoring information for f12abf
Names: f12aef; nagf_sparseig_real_monit
Keywords: eigenproblem; monitoring information; real, sparse matrix; sparse eigenproblems, monitoring
GAMS: D4c1b3
Initialization routine for (f12agc) computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded (standard or generalized) eigenproblem
Names: f12afc; nag_real_banded_sparse_eigensystem_init
Keywords: eigenproblem, initialization; real, band matrix
GAMS: D4c1b3
Initialization routine for (f12agf) computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded (standard or generalized) eigenproblem
Names: f12aff; nagf_sparseig_real_band_init
Keywords: eigenproblem, initialization; real, band matrix
GAMS: D4c1b3
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded eigenproblem, driver
Names: f12agc; nag_real_banded_sparse_eigensystem_sol
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band matrix
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded eigenproblem, driver
Names: f12agf; nagf_sparseig_real_band_solve
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band matrix
GAMS: D4a6
Initialization routine for (f12fbc) computing selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse (standard or generalized) eigenproblem
Names: f12fac; nag_real_symm_sparse_eigensystem_init
Keywords: eigenproblem, initialization; real, sparse, symmetric matrix
GAMS: D4c1b3
Initialization routine for (f12fbf) computing selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse (standard or generalized) eigenproblem
Names: f12faf; nagf_sparseig_real_symm_init
Keywords: eigenproblem, initialization; real, sparse, symmetric matrix
GAMS: D4c1b3
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, reverse communication
Names: f12fbc; nag_real_symm_sparse_eigensystem_iter
Keywords: eigenvalues; eigenvectors; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, reverse communication
Names: f12fbf; nagf_sparseig_real_symm_iter
Keywords: eigenvalues; eigenvectors; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, postprocessing for f12fbc
Names: f12fcc; nag_real_symm_sparse_eigensystem_sol
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, postprocessing
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, postprocessing for f12fbf
Names: f12fcf; nagf_sparseig_real_symm_proc
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, postprocessing
GAMS: D4a7
Set a single option from a string (f12fbc/f12fcc/f12fgc)
Names: f12fdc; nag_real_symm_sparse_eigensystem_option
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, options
GAMS: D4c1b3
Set a single option from a string (f12fbf/f12fcf/f12fgf)
Names: f12fdf; nagf_sparseig_real_symm_option
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, options
GAMS: D4c1b3
Provides monitoring information for f12fbc
Names: f12fec; nag_real_symm_sparse_eigensystem_monit
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, monitoring
GAMS: D4c1b3
Provides monitoring information for f12fbf
Names: f12fef; nagf_sparseig_real_symm_monit
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, monitoring
GAMS: D4c1b3
Initialization routine for (f12fgc) computing selected eigenvalues and, optionally, eigenvectors of a real symmetric banded (standard or generalized) eigenproblem
Names: f12ffc; nag_real_symm_banded_sparse_eigensystem_init
Keywords: eigenproblem, initialization; real, band, symmetric matrix
GAMS: D4c1b3
Initialization routine for (f12fgf) computing selected eigenvalues and, optionally, eigenvectors of a real symmetric banded (standard or generalized) eigenproblem
Names: f12fff; nagf_sparseig_real_symm_band_init
Keywords: eigenproblem, initialization; real, band, symmetric matrix
GAMS: D4c1b3
Selected eigenvalues and, optionally, eigenvectors of a real symmetric banded eigenproblem, driver
Names: f12fgc; nag_real_symm_banded_sparse_eigensystem_sol
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band, symmetric matrix
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a real symmetric banded eigenproblem, driver
Names: f12fgf; nagf_sparseig_real_symm_band_solve
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band, symmetric matrix
GAMS: D4a6