Example description


List of options:

                                    Name   Value                # times used
                          acceptable_tol = 2.5e-06                   1
                      bound_relax_factor = 1e-08                     2
            check_derivatives_for_naninf = yes                       1
                         derivative_test = none                      1
                   hessian_approximation = exact                     7
              limited_memory_max_history = 6                         0
                              ma97_order = auto                      3
                            ma97_scaling = dynamic                   3
                                  ma97_u = 1e-08                     3
                            max_cpu_time = 60                        1
                                max_iter = 26                        1
                     nag_monitoring_file = 3                         1
                    nag_monitoring_level = 5                         1
                          nag_print_file = 2                         1
                         nag_print_level = 2                         1
                     nlp_lower_bound_inf = -1e+20                    1
                      nlp_scaling_method = gradient-based            1
                     nlp_upper_bound_inf = 1e+20                     1
                      obj_scaling_factor = 1                         1
                 print_timing_statistics = no                        1
                                     tol = 2.5e-08                   3

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This version is built and supported by Numerical Algorithms Group (NAG) Ltd.  
                 For support email support@nag.co.uk
******************************************************************************

This is Ipopt version 3.12.4, running with linear solver ma97.

Number of nonzeros in equality constraint Jacobian...:        4
Number of nonzeros in inequality constraint Jacobian.:        8
Number of nonzeros in Lagrangian Hessian.............:       10

Scaling parameter for objective function = 1.000000e+00
objective scaling factor = 1
No x scaling provided
No c scaling provided
No d scaling provided
DenseVector "original x_L unscaled" with 4 elements:
original x_L unscaled[    1]= 0.0000000000000000e+00
original x_L unscaled[    2]= 0.0000000000000000e+00
original x_L unscaled[    3]= 0.0000000000000000e+00
original x_L unscaled[    4]= 0.0000000000000000e+00
DenseVector "original x_U unscaled" with 0 elements:
DenseVector "original d_L unscaled" with 2 elements:
original d_L unscaled[    1]= 2.1000000000000000e+01
original d_L unscaled[    2]= 5.0000000000000000e+00
DenseVector "original d_U unscaled" with 0 elements:
DenseVector "modified x_L scaled" with 4 elements:
modified x_L scaled[    1]=-1.0000000000000000e-08
modified x_L scaled[    2]=-1.0000000000000000e-08
modified x_L scaled[    3]=-1.0000000000000000e-08
modified x_L scaled[    4]=-1.0000000000000000e-08
DenseVector "modified x_U scaled" with 0 elements:
DenseVector "modified d_L scaled" with 2 elements:
modified d_L scaled[    1]= 2.0999999790000000e+01
modified d_L scaled[    2]= 4.9999999500000003e+00
DenseVector "modified d_U scaled" with 0 elements:
DenseVector "initial x unscaled" with 4 elements:
initial x unscaled[    1]= 1.0000000000000000e+00
initial x unscaled[    2]= 1.0000000000000000e+00
initial x unscaled[    3]= 1.0000000000000000e+00
initial x unscaled[    4]= 1.0000000000000000e+00
Initial values of x sufficiently inside the bounds.
Initial values of s sufficiently inside the bounds.

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-2.3550000000000001e+01
  RHS[ 0][ 0][    2]=-2.5750000000000000e+01
  RHS[ 0][ 0][    3]=-3.8000000000000000e+01
  RHS[ 0][ 0][    4]=-3.9500000000000000e+01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 1.0000000000000000e+00
  RHS[ 0][ 1][    2]= 1.0000000000000000e+00

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  Homogeneous vector, all elements have value  0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  Homogeneous vector, all elements have value  0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  0.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Uninitialized!
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Homogeneous vector, all elements have value  1.0000000000000000e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    Homogeneous vector, all elements have value  1.0000000000000000e+00
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1900871710465619e+01  (0)
  KKT[3][0][    1,    2]= 1.1832734374958813e+01  (1)
  KKT[3][0][    1,    3]= 3.4542393087661402e+01  (2)
  KKT[3][0][    1,    4]= 5.1880501644602440e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   0.000000000000000e+00
(1) KKT[2][1] =   0.000000000000000e+00
(2) KKT[3][1] =   0.000000000000000e+00
(3) KKT[4][1] =   0.000000000000000e+00
(4) KKT[2][2] =   0.000000000000000e+00
(5) KKT[3][2] =   0.000000000000000e+00
(6) KKT[4][2] =   0.000000000000000e+00
(7) KKT[3][3] =   0.000000000000000e+00
(8) KKT[4][3] =   0.000000000000000e+00
(9) KKT[4][4] =   0.000000000000000e+00
(10) KKT[1][1] =   1.000000000000000e+00
(11) KKT[2][2] =   1.000000000000000e+00
(12) KKT[3][3] =   1.000000000000000e+00
(13) KKT[4][4] =   1.000000000000000e+00
(14) KKT[5][5] =   1.000000000000000e+00
(15) KKT[6][6] =   1.000000000000000e+00
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.190087171046562e+01
(22) KKT[8][2] =   1.183273437495881e+01
(23) KKT[8][3] =   3.454239308766140e+01
(24) KKT[8][4] =   5.188050164460244e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
HSL_MA97: Make heuristic choice of AMD or MeTiS
HSL_MA97: Used AMD
HSL_MA97: PREDICTED nfactor 45.000000, maxfront 9
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -2.3550000000000001e+01
Trhs[    0,    1] = -2.5750000000000000e+01
Trhs[    0,    2] = -3.8000000000000000e+01
Trhs[    0,    3] = -3.9500000000000000e+01
Trhs[    0,    4] =  1.0000000000000000e+00
Trhs[    0,    5] =  1.0000000000000000e+00
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] =  0.0000000000000000e+00
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  1.1433520952693961e-01
Tsol[    0,    1] = -1.7537673840920132e-01
Tsol[    0,    2] =  1.0739304065987820e-01
Tsol[    0,    3] = -4.6351511777616747e-02
Tsol[    0,    4] =  5.9037524177086054e-01
Tsol[    0,    5] =  4.1266703283417938e-01
Tsol[    0,    6] = -1.7438577687930067e+01
Tsol[    0,    7] = -4.0962475822913946e-01
Tsol[    0,    8] = -5.8733296716582062e-01
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 1.1433520952693961e-01
  SOL[ 0][ 0][    2]=-1.7537673840920132e-01
  SOL[ 0][ 0][    3]= 1.0739304065987820e-01
  SOL[ 0][ 0][    4]=-4.6351511777616747e-02

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 5.9037524177086054e-01
  SOL[ 0][ 1][    2]= 4.1266703283417938e-01

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.7438577687930067e+01

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-4.0962475822913946e-01
  SOL[ 0][ 3][    2]=-5.8733296716582062e-01
Least square estimates max(y_c) = 1.743858e+01, max(y_d) = 5.873330e-01
Total number of variables............................:        4
                     variables with only lower bounds:        4
                variables with lower and upper bounds:        0
                     variables with only upper bounds:        0
Total number of equality constraints.................:        1
Total number of inequality constraints...............:        2
        inequality constraints with only lower bounds:        2
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

Convergence Check:
  overall_error =  8.9156501027688250e+01   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  5.9037524177086054e-01   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  3.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  8.9156501027688250e+01   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 0
Acceptable Check:
  overall_error =  8.9156501027688250e+01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  5.9037524177086054e-01   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  3.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  8.9156501027688250e+01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  1.3080000000000001e+02   last_obj_val                = -1.0000000000000001e+50
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  7.6452599388379204e+47 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 0

**************************************************
*** Update HessianMatrix for Iteration 0:
**************************************************



**************************************************
*** Summary of Iteration: 0:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  1.3080000e+02 3.00e+00 5.90e-01  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0 y

**************************************************
*** Beginning Iteration 0 from the following point:
**************************************************

Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 1.0000000000000000e+00
||curr_s||_inf   = 1.1015650081768825e+02
||curr_y_c||_inf = 1.7438577687930067e+01
||curr_y_d||_inf = 5.8733296716582062e-01
||curr_z_L||_inf = 1.0000000000000000e+00
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 1.0000000000000000e+00
||curr_v_U||_inf = 0.0000000000000000e+00

No search direction has been computed yet.
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 1.0000000000000000e+00
curr_x[    2]= 1.0000000000000000e+00
curr_x[    3]= 1.0000000000000000e+00
curr_x[    4]= 1.0000000000000000e+00
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 1.1015650081768825e+02
curr_s[    2]= 2.0300000000000001e+01
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.7438577687930067e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.0962475822913946e-01
curr_y_d[    2]=-5.8733296716582062e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 1.0000000099999999e+00
curr_slack_x_L[    2]= 1.0000000099999999e+00
curr_slack_x_L[    3]= 1.0000000099999999e+00
curr_slack_x_L[    4]= 1.0000000099999999e+00
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
Homogeneous vector, all elements have value  1.0000000000000000e+00
DenseVector "curr_z_U" with 0 elements:
Homogeneous vector, all elements have value  1.0000000000000000e+00
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 8.9156501027688250e+01
curr_slack_s_L[    2]= 1.5300000050000001e+01
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
Homogeneous vector, all elements have value  1.0000000000000000e+00
DenseVector "curr_v_U" with 0 elements:
Homogeneous vector, all elements have value  1.0000000000000000e+00
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-1.1433520952693854e-01
curr_grad_lag_x[    2]= 1.7537673840920576e-01
curr_grad_lag_x[    3]=-1.0739304065987199e-01
curr_grad_lag_x[    4]= 4.6351511777615428e-02
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-5.9037524177086054e-01
curr_grad_lag_s[    2]=-4.1266703283417938e-01


***Current NLP Values for Iteration 0:

                                   (scaled)                 (unscaled)
Objective...............:   1.3080000000000001e+02    1.3080000000000001e+02
Dual infeasibility......:   5.9037524177086054e-01    5.9037524177086054e-01
Constraint violation....:   3.0000000000000000e+00    3.0000000000000000e+00
Complementarity.........:   8.9156501027688250e+01    8.9156501027688250e+01
Overall NLP error.......:   8.9156501027688250e+01    8.9156501027688250e+01

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 3.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 1.1015650081768825e+02
curr_d[    2]= 2.0300000000000001e+01
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]= 0.0000000000000000e+00
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1900871710465619e+01  (0)
jac_d[    1,    2]= 1.1832734374958813e+01  (1)
jac_d[    1,    3]= 3.4542393087661402e+01  (2)
jac_d[    1,    4]= 5.1880501644602440e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 4.0078791515727900e-02  (0)
W[    2,    1]=-3.5734258038424687e-04  (1)
W[    3,    1]=-3.8555383673037166e-02  (2)
W[    4,    1]=-1.1660652623064897e-03  (3)
W[    2,    2]= 2.7311182929367437e-02  (4)
W[    3,    2]=-2.6162581778132361e-02  (5)
W[    4,    2]=-7.9125857085083240e-04  (6)
W[    3,    3]= 1.5009060072718036e-01  (7)
W[    4,    3]=-8.5372635276010855e-02  (8)
W[    4,    4]= 8.7329959109168187e-02  (9)



**************************************************
*** Update Barrier Parameter for Iteration 0:
**************************************************

Optimality Error for Barrier Sub-problem = 8.905650e+01
Barrier Parameter: 1.000000e-01

**************************************************
*** Solving the Primal Dual System for Iteration 0:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 7.8566579147306148e-01
  RHS[ 0][ 0][    2]= 1.0753777394092057e+00
  RHS[ 0][ 0][    3]= 7.9260796034012804e-01
  RHS[ 0][ 0][    4]= 9.4635251277761545e-01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.0850413502895422e-01
  RHS[ 0][ 1][    2]= 5.8079801947476173e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 3.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 0.0000000000000000e+00
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 4.0078791515727900e-02  (0)
    Term: 0[    2,    1]=-3.5734258038424687e-04  (1)
    Term: 0[    3,    1]=-3.8555383673037166e-02  (2)
    Term: 0[    4,    1]=-1.1660652623064897e-03  (3)
    Term: 0[    2,    2]= 2.7311182929367437e-02  (4)
    Term: 0[    3,    2]=-2.6162581778132361e-02  (5)
    Term: 0[    4,    2]=-7.9125857085083240e-04  (6)
    Term: 0[    3,    3]= 1.5009060072718036e-01  (7)
    Term: 0[    4,    3]=-8.5372635276010855e-02  (8)
    Term: 0[    4,    4]= 8.7329959109168187e-02  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 9.9999999000000017e-01
      Term: 1[    2]= 9.9999999000000017e-01
      Term: 1[    3]= 9.9999999000000017e-01
      Term: 1[    4]= 9.9999999000000017e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 1.1216232001853035e-02
    KKT[1][1][    2]= 6.5359476910589936e-02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1900871710465619e+01  (0)
  KKT[3][0][    1,    2]= 1.1832734374958813e+01  (1)
  KKT[3][0][    1,    3]= 3.4542393087661402e+01  (2)
  KKT[3][0][    1,    4]= 5.1880501644602440e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   4.007879151572790e-02
(1) KKT[2][1] =  -3.573425803842469e-04
(2) KKT[3][1] =  -3.855538367303717e-02
(3) KKT[4][1] =  -1.166065262306490e-03
(4) KKT[2][2] =   2.731118292936744e-02
(5) KKT[3][2] =  -2.616258177813236e-02
(6) KKT[4][2] =  -7.912585708508324e-04
(7) KKT[3][3] =   1.500906007271804e-01
(8) KKT[4][3] =  -8.537263527601086e-02
(9) KKT[4][4] =   8.732995910916819e-02
(10) KKT[1][1] =   9.999999900000002e-01
(11) KKT[2][2] =   9.999999900000002e-01
(12) KKT[3][3] =   9.999999900000002e-01
(13) KKT[4][4] =   9.999999900000002e-01
(14) KKT[5][5] =   1.121623200185303e-02
(15) KKT[6][6] =   6.535947691058994e-02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.190087171046562e+01
(22) KKT[8][2] =   1.183273437495881e+01
(23) KKT[8][3] =   3.454239308766140e+01
(24) KKT[8][4] =   5.188050164460244e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  7.8566579147306148e-01
Trhs[    0,    1] =  1.0753777394092057e+00
Trhs[    0,    2] =  7.9260796034012804e-01
Trhs[    0,    3] =  9.4635251277761545e-01
Trhs[    0,    4] =  4.0850413502895422e-01
Trhs[    0,    5] =  5.8079801947476173e-01
Trhs[    0,    6] =  3.0000000000000000e+00
Trhs[    0,    7] =  0.0000000000000000e+00
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  1.4834722739123620e+00
Tsol[    0,    1] =  1.4602809304393991e+00
Tsol[    0,    2] = -1.2402495971439942e-01
Tsol[    0,    3] =  1.8027175536263826e-01
Tsol[    0,    4] =  4.0002199770001418e+01
Tsol[    0,    5] =  1.0447235669600664e+01
Tsol[    0,    6] = -1.4740319268725783e+00
Tsol[    0,    7] =  4.0169818175853800e-02
Tsol[    0,    8] =  1.0202783905199447e-01
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 1.4834722739123620e+00
  SOL[ 0][ 0][    2]= 1.4602809304393991e+00
  SOL[ 0][ 0][    3]=-1.2402495971439942e-01
  SOL[ 0][ 0][    4]= 1.8027175536263826e-01

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 4.0002199770001418e+01
  SOL[ 0][ 1][    2]= 1.0447235669600664e+01

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.4740319268725783e+00

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 4.0169818175853800e-02
  SOL[ 0][ 3][    2]= 1.0202783905199447e-01
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.4155343563970746e-15
  resid[ 0][    2]=-9.7144514654701197e-16
  resid[ 0][    3]=-9.7144514654701197e-16
  resid[ 0][    4]=-3.6359804056473877e-15

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 1.1102230246251565e-16

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 7.1054273576010019e-15
  resid[ 3][    2]=-1.7763568394002505e-15

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 7.1054273576010019e-15
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.635980e-15
max-norm resid_s  1.110223e-16
max-norm resid_c  0.000000e+00
max-norm resid_d  7.105427e-15
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 7.105427e-15
max-norm resid_vU 0.000000e+00
nrm_rhs = 8.91e+01 nrm_sol = 4.00e+01 nrm_resid = 7.11e-15
residual_ratio = 5.505578e-17

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-1.4155343563970746e-15
  RHS[ 0][ 0][    2]=-9.7144514654701197e-16
  RHS[ 0][ 0][    3]=-9.7144514654701197e-16
  RHS[ 0][ 0][    4]=-3.6359804056473877e-15

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 7.9696121715166404e-17
  RHS[ 0][ 1][    2]= 1.1102230246251565e-16

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 7.1054273576010019e-15
  RHS[ 0][ 3][    2]=-1.7763568394002505e-15

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 4.0078791515727900e-02  (0)
    Term: 0[    2,    1]=-3.5734258038424687e-04  (1)
    Term: 0[    3,    1]=-3.8555383673037166e-02  (2)
    Term: 0[    4,    1]=-1.1660652623064897e-03  (3)
    Term: 0[    2,    2]= 2.7311182929367437e-02  (4)
    Term: 0[    3,    2]=-2.6162581778132361e-02  (5)
    Term: 0[    4,    2]=-7.9125857085083240e-04  (6)
    Term: 0[    3,    3]= 1.5009060072718036e-01  (7)
    Term: 0[    4,    3]=-8.5372635276010855e-02  (8)
    Term: 0[    4,    4]= 8.7329959109168187e-02  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 9.9999999000000017e-01
      Term: 1[    2]= 9.9999999000000017e-01
      Term: 1[    3]= 9.9999999000000017e-01
      Term: 1[    4]= 9.9999999000000017e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 1.1216232001853035e-02
    KKT[1][1][    2]= 6.5359476910589936e-02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1900871710465619e+01  (0)
  KKT[3][0][    1,    2]= 1.1832734374958813e+01  (1)
  KKT[3][0][    1,    3]= 3.4542393087661402e+01  (2)
  KKT[3][0][    1,    4]= 5.1880501644602440e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   4.007879151572790e-02
(1) KKT[2][1] =  -3.573425803842469e-04
(2) KKT[3][1] =  -3.855538367303717e-02
(3) KKT[4][1] =  -1.166065262306490e-03
(4) KKT[2][2] =   2.731118292936744e-02
(5) KKT[3][2] =  -2.616258177813236e-02
(6) KKT[4][2] =  -7.912585708508324e-04
(7) KKT[3][3] =   1.500906007271804e-01
(8) KKT[4][3] =  -8.537263527601086e-02
(9) KKT[4][4] =   8.732995910916819e-02
(10) KKT[1][1] =   9.999999900000002e-01
(11) KKT[2][2] =   9.999999900000002e-01
(12) KKT[3][3] =   9.999999900000002e-01
(13) KKT[4][4] =   9.999999900000002e-01
(14) KKT[5][5] =   1.121623200185303e-02
(15) KKT[6][6] =   6.535947691058994e-02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.190087171046562e+01
(22) KKT[8][2] =   1.183273437495881e+01
(23) KKT[8][3] =   3.454239308766140e+01
(24) KKT[8][4] =   5.188050164460244e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -1.4155343563970746e-15
Trhs[    0,    1] = -9.7144514654701197e-16
Trhs[    0,    2] = -9.7144514654701197e-16
Trhs[    0,    3] = -3.6359804056473877e-15
Trhs[    0,    4] =  7.9696121715166404e-17
Trhs[    0,    5] =  1.1102230246251565e-16
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] =  7.1054273576010019e-15
Trhs[    0,    8] = -1.7763568394002505e-15
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -1.7126872825619164e-16
Tsol[    0,    1] = -1.8756119840691598e-16
Tsol[    0,    2] =  3.0516971182305158e-16
Tsol[    0,    3] =  5.3660214840056076e-17
Tsol[    0,    4] =  1.9621746481089269e-15
Tsol[    0,    5] =  3.7892381338602249e-15
Tsol[    0,    6] = -8.5337615563311272e-16
Tsol[    0,    7] = -5.7687915633822337e-17
Tsol[    0,    8] =  1.3664031985624862e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-1.7126872825619164e-16
  SOL[ 0][ 0][    2]=-1.8756119840691598e-16
  SOL[ 0][ 0][    3]= 3.0516971182305158e-16
  SOL[ 0][ 0][    4]= 5.3660214840056076e-17

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 1.9621746481089269e-15
  SOL[ 0][ 1][    2]= 3.7892381338602249e-15

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-8.5337615563311272e-16

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-5.7687915633822337e-17
  SOL[ 0][ 3][    2]= 1.3664031985624862e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 1.3877787807814457e-16
  resid[ 0][    2]= 2.7755575615628914e-17
  resid[ 0][    3]=-8.3266726846886741e-17
  resid[ 0][    4]=-3.0531133177191805e-16

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-4.4408920985006262e-16

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-7.1054273576010019e-15
  resid[ 3][    2]= 1.7763568394002505e-15

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]=-2.2204460492503131e-16
  resid[ 4][    4]=-1.1102230246251565e-16

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-7.1054273576010019e-15
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.053113e-16
max-norm resid_s  0.000000e+00
max-norm resid_c  4.440892e-16
max-norm resid_d  7.105427e-15
max-norm resid_zL 2.220446e-16
max-norm resid_zU 0.000000e+00
max-norm resid_vL 7.105427e-15
max-norm resid_vU 0.000000e+00
nrm_rhs = 8.91e+01 nrm_sol = 4.00e+01 nrm_resid = 7.11e-15
residual_ratio = 5.505578e-17
*** Step Calculated for Iteration: 0

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]=-1.4834722739123622e+00
  delta[ 0][    2]=-1.4602809304393993e+00
  delta[ 0][    3]= 1.2402495971439972e-01
  delta[ 0][    4]=-1.8027175536263820e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.0002199770001418e+01
  delta[ 1][    2]=-1.0447235669600660e+01

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 1.4740319268725774e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-4.0169818175853855e-02
  delta[ 3][    2]=-1.0202783905199433e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 5.8347225807763969e-01
  delta[ 4][    2]= 5.6028091483659026e-01
  delta[ 4][    3]=-1.0240249594741500e+00
  delta[ 4][    4]=-7.1972824744007924e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-5.5020442359500665e-01
  delta[ 6][    2]=-3.1063819378218505e-01

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 0:
**************************************************

--> Starting line search in iteration 0 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  8.9156501027688250e+01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  5.9037524177086054e-01   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  3.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  8.9156501027688250e+01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  1.3080000000000001e+02   last_obj_val                = -1.0000000000000001e+50
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  7.6452599388379204e+47 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 0
The current filter has 0 entries.
Relative step size for delta_x = 7.417361e-01
minimal step size ALPHA_MIN = 1.934668E-11
Starting checks for alpha (primal) = 6.67e-01
trial_max is initialized to 3.000000e+04
trial_min is initialized to 3.000000e-04
Checking acceptability for trial step size alpha_primal_test= 6.673532e-01:
  New values of barrier function     =  7.8989662078651492e+01  (reference  1.3007828384293424e+02):
  New values of constraint violation =  1.0884783964214879e+00  (reference  3.0000000000000000e+00):
reference_theta = 3.000000e+00 reference_gradBarrTDelta = -7.753270e+01
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 3.000000e+00 reference_gradBarrTDelta = -7.753270e+01
Convergence Check:
  overall_error =  2.9236515515232938e+01   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  2.3566895846196956e-01   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  9.9794031750440659e-01   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.9236515515232938e+01   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 1
Acceptable Check:
  overall_error =  2.9236515515232938e+01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  2.3566895846196956e-01   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  9.9794031750440659e-01   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.9236515515232938e+01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  7.8782624220870048e+01   last_obj_val                =  1.3080000000000001e+02
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  6.6026457348383438e-01 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 1

**************************************************
*** Update HessianMatrix for Iteration 1:
**************************************************



**************************************************
*** Summary of Iteration: 1:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   1  7.8782624e+01 9.98e-01 2.36e-01  -1.0 4.00e+01    -  9.67e-01 6.67e-01f  1 

**************************************************
*** Beginning Iteration 1 from the following point:
**************************************************

Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 1.0827684571557799e+00
||curr_s||_inf   = 8.3460903694136817e+01
||curr_y_c||_inf = 1.6454877724095773e+01
||curr_y_d||_inf = 6.5542157485186969e-01
||curr_z_L||_inf = 1.5640854064665453e+00
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 6.9968328506144539e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 1.4834722739123622e+00
||delta_s||_inf   = 4.0002199770001418e+01
||delta_y_c||_inf = 1.4740319268725774e+00
||delta_y_d||_inf = 1.0202783905199433e-01
||delta_z_L||_inf = 1.0240249594741500e+00
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 5.5020442359500665e-01
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 9.9999901000000779e-03
curr_x[    2]= 2.5476808016708929e-02
curr_x[    3]= 1.0827684571557799e+00
curr_x[    4]= 8.7969506223191773e-01
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 8.3460903694136817e+01
curr_s[    2]= 1.3328003557454222e+01
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.6454877724095773e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.3643221603682469e-01
curr_y_d[    2]=-6.5542157485186969e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 1.0000000100000078e-02
curr_slack_x_L[    2]= 2.5476818016708931e-02
curr_slack_x_L[    3]= 1.0827684671557798e+00
curr_slack_x_L[    4]= 8.7969507223191779e-01
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 1.5640854064665453e+00
curr_z_L[    2]= 1.5416646347888423e+00
curr_z_L[    3]= 1.0000000000000009e-02
curr_z_L[    4]= 3.0418593963610785e-01
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 6.2460903904136813e+01
curr_slack_s_L[    2]= 8.3280036074542210e+00
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.6807704800597016e-01
curr_v_L[    2]= 6.9968328506144539e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-2.1321333754836314e-01
curr_grad_lag_x[    2]=-1.0974464897260949e-01
curr_grad_lag_x[    3]= 2.3566895846196956e-01
curr_grad_lag_x[    4]= 2.2985598118471817e-01
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-3.1644831969145470e-02
curr_grad_lag_s[    2]=-4.4261710209575700e-02

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]=-1.4834722739123622e+00
  delta[ 0][    2]=-1.4602809304393993e+00
  delta[ 0][    3]= 1.2402495971439972e-01
  delta[ 0][    4]=-1.8027175536263820e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.0002199770001418e+01
  delta[ 1][    2]=-1.0447235669600660e+01

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 1.4740319268725774e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-4.0169818175853855e-02
  delta[ 3][    2]=-1.0202783905199433e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 5.8347225807763969e-01
  delta[ 4][    2]= 5.6028091483659026e-01
  delta[ 4][    3]=-1.0240249594741500e+00
  delta[ 4][    4]=-7.1972824744007924e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-5.5020442359500665e-01
  delta[ 6][    2]=-3.1063819378218505e-01

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 1:

                                   (scaled)                 (unscaled)
Objective...............:   7.8782624220870048e+01    7.8782624220870048e+01
Dual infeasibility......:   2.3566895846196956e-01    2.3566895846196956e-01
Constraint violation....:   9.9794031750440659e-01    9.9794031750440659e-01
Complementarity.........:   2.9236515515232938e+01    2.9236515515232938e+01
Overall NLP error.......:   2.9236515515232938e+01    2.9236515515232938e+01

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 9.9794031750440659e-01
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 8.3370365615219740e+01
curr_d[    2]= 1.3328003557454219e+01
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-9.0538078917077769e-02
curr_d - curr_s[    2]=-3.5527136788005009e-15

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1999069712087620e+01  (0)
jac_d[    1,    2]= 1.1898391732106615e+01  (1)
jac_d[    1,    3]= 3.4425217214759435e+01  (2)
jac_d[    1,    4]= 5.1918789390799873e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 4.0600755335508484e-02  (0)
W[    2,    1]=-8.0171598605041427e-08  (1)
W[    3,    1]=-3.6763037283151076e-04  (2)
W[    4,    1]=-9.0332862351682204e-06  (3)
W[    2,    2]= 2.7550405418060590e-02  (4)
W[    3,    2]=-6.3555391550212481e-04  (5)
W[    4,    2]=-1.5616610761493973e-05  (6)
W[    3,    3]= 5.8198412238091107e-02  (7)
W[    4,    3]=-7.1610651858095689e-02  (8)
W[    4,    4]= 8.8142183071655555e-02  (9)



**************************************************
*** Update Barrier Parameter for Iteration 1:
**************************************************

Optimality Error for Barrier Sub-problem = 2.913652e+01
Barrier Parameter: 1.000000e-01

**************************************************
*** Solving the Primal Dual System for Iteration 1:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-8.6491268310817411e+00
  RHS[ 0][ 0][    2]=-2.4932159733760479e+00
  RHS[ 0][ 0][    3]= 1.5331411043595494e-01
  RHS[ 0][ 0][    4]= 4.2036716753249048e-01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.3483221455030319e-01
  RHS[ 0][ 1][    2]= 6.4341489513490957e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 9.9794031750440659e-01

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-9.0538078917077769e-02
  RHS[ 0][ 3][    2]=-3.5527136788005009e-15

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 4.0600755335508484e-02  (0)
    Term: 0[    2,    1]=-8.0171598605041427e-08  (1)
    Term: 0[    3,    1]=-3.6763037283151076e-04  (2)
    Term: 0[    4,    1]=-9.0332862351682204e-06  (3)
    Term: 0[    2,    2]= 2.7550405418060590e-02  (4)
    Term: 0[    3,    2]=-6.3555391550212481e-04  (5)
    Term: 0[    4,    2]=-1.5616610761493973e-05  (6)
    Term: 0[    3,    3]= 5.8198412238091107e-02  (7)
    Term: 0[    4,    3]=-7.1610651858095689e-02  (8)
    Term: 0[    4,    4]= 8.8142183071655555e-02  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.5640853908256793e+02
      Term: 1[    2]= 6.0512448366893544e+01
      Term: 1[    3]= 9.2355848026014695e-03
      Term: 1[    4]= 3.4578565827854724e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 7.4939204966415675e-03
    KKT[1][1][    2]= 8.4015727903284473e-02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1999069712087620e+01  (0)
  KKT[3][0][    1,    2]= 1.1898391732106615e+01  (1)
  KKT[3][0][    1,    3]= 3.4425217214759435e+01  (2)
  KKT[3][0][    1,    4]= 5.1918789390799873e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   4.060075533550848e-02
(1) KKT[2][1] =  -8.017159860504143e-08
(2) KKT[3][1] =  -3.676303728315108e-04
(3) KKT[4][1] =  -9.033286235168220e-06
(4) KKT[2][2] =   2.755040541806059e-02
(5) KKT[3][2] =  -6.355539155021248e-04
(6) KKT[4][2] =  -1.561661076149397e-05
(7) KKT[3][3] =   5.819841223809111e-02
(8) KKT[4][3] =  -7.161065185809569e-02
(9) KKT[4][4] =   8.814218307165556e-02
(10) KKT[1][1] =   1.564085390825679e+02
(11) KKT[2][2] =   6.051244836689354e+01
(12) KKT[3][3] =   9.235584802601469e-03
(13) KKT[4][4] =   3.457856582785472e-01
(14) KKT[5][5] =   7.493920496641568e-03
(15) KKT[6][6] =   8.401572790328447e-02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.199906971208762e+01
(22) KKT[8][2] =   1.189839173210662e+01
(23) KKT[8][3] =   3.442521721475944e+01
(24) KKT[8][4] =   5.191878939079987e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -8.6491268310817411e+00
Trhs[    0,    1] = -2.4932159733760479e+00
Trhs[    0,    2] =  1.5331411043595494e-01
Trhs[    0,    3] =  4.2036716753249048e-01
Trhs[    0,    4] =  4.3483221455030319e-01
Trhs[    0,    5] =  6.4341489513490957e-01
Trhs[    0,    6] =  9.9794031750440659e-01
Trhs[    0,    7] = -9.0538078917077769e-02
Trhs[    0,    8] = -3.5527136788005009e-15
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -7.3517438910112032e-02
Tsol[    0,    1] = -8.1448495331724408e-02
Tsol[    0,    2] =  5.3706591213298172e-01
Tsol[    0,    3] =  6.1584033961326146e-01
Tsol[    0,    4] =  4.8701586675493374e+01
Tsol[    0,    5] =  6.1368223828224258e+00
Tsol[    0,    6] =  3.9851461831737836e+00
Tsol[    0,    7] = -6.9866395943857518e-02
Tsol[    0,    8] = -1.2782529562891481e-01
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-7.3517438910112032e-02
  SOL[ 0][ 0][    2]=-8.1448495331724408e-02
  SOL[ 0][ 0][    3]= 5.3706591213298172e-01
  SOL[ 0][ 0][    4]= 6.1584033961326146e-01

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 4.8701586675493374e+01
  SOL[ 0][ 1][    2]= 6.1368223828224258e+00

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]= 3.9851461831737836e+00

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-6.9866395943857518e-02
  SOL[ 0][ 3][    2]=-1.2782529562891481e-01
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-3.0531133177191805e-16
  resid[ 0][    2]= 1.4710455076283324e-15
  resid[ 0][    3]= 3.3029134982598407e-15
  resid[ 0][    4]= 8.8817841970012523e-16

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]=-5.5511151231257827e-17
  resid[ 1][    2]= 8.3266726846886741e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 1.1102230246251565e-16

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 0.0000000000000000e+00
  resid[ 3][    2]= 0.0000000000000000e+00

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.302913e-15
max-norm resid_s  8.326673e-17
max-norm resid_c  1.110223e-16
max-norm resid_d  0.000000e+00
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.91e+01 nrm_sol = 4.87e+01 nrm_resid = 3.30e-15
residual_ratio = 4.243312e-17

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-3.0531133177191805e-16
  RHS[ 0][ 0][    2]= 1.4710455076283324e-15
  RHS[ 0][ 0][    3]= 3.3029134982598407e-15
  RHS[ 0][ 0][    4]= 8.8817841970012523e-16

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]=-5.5511151231257827e-17
  RHS[ 0][ 1][    2]= 8.3266726846886741e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 1.1102230246251565e-16

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 0.0000000000000000e+00
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 4.0600755335508484e-02  (0)
    Term: 0[    2,    1]=-8.0171598605041427e-08  (1)
    Term: 0[    3,    1]=-3.6763037283151076e-04  (2)
    Term: 0[    4,    1]=-9.0332862351682204e-06  (3)
    Term: 0[    2,    2]= 2.7550405418060590e-02  (4)
    Term: 0[    3,    2]=-6.3555391550212481e-04  (5)
    Term: 0[    4,    2]=-1.5616610761493973e-05  (6)
    Term: 0[    3,    3]= 5.8198412238091107e-02  (7)
    Term: 0[    4,    3]=-7.1610651858095689e-02  (8)
    Term: 0[    4,    4]= 8.8142183071655555e-02  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.5640853908256793e+02
      Term: 1[    2]= 6.0512448366893544e+01
      Term: 1[    3]= 9.2355848026014695e-03
      Term: 1[    4]= 3.4578565827854724e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 7.4939204966415675e-03
    KKT[1][1][    2]= 8.4015727903284473e-02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1999069712087620e+01  (0)
  KKT[3][0][    1,    2]= 1.1898391732106615e+01  (1)
  KKT[3][0][    1,    3]= 3.4425217214759435e+01  (2)
  KKT[3][0][    1,    4]= 5.1918789390799873e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   4.060075533550848e-02
(1) KKT[2][1] =  -8.017159860504143e-08
(2) KKT[3][1] =  -3.676303728315108e-04
(3) KKT[4][1] =  -9.033286235168220e-06
(4) KKT[2][2] =   2.755040541806059e-02
(5) KKT[3][2] =  -6.355539155021248e-04
(6) KKT[4][2] =  -1.561661076149397e-05
(7) KKT[3][3] =   5.819841223809111e-02
(8) KKT[4][3] =  -7.161065185809569e-02
(9) KKT[4][4] =   8.814218307165556e-02
(10) KKT[1][1] =   1.564085390825679e+02
(11) KKT[2][2] =   6.051244836689354e+01
(12) KKT[3][3] =   9.235584802601469e-03
(13) KKT[4][4] =   3.457856582785472e-01
(14) KKT[5][5] =   7.493920496641568e-03
(15) KKT[6][6] =   8.401572790328447e-02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.199906971208762e+01
(22) KKT[8][2] =   1.189839173210662e+01
(23) KKT[8][3] =   3.442521721475944e+01
(24) KKT[8][4] =   5.191878939079987e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -3.0531133177191805e-16
Trhs[    0,    1] =  1.4710455076283324e-15
Trhs[    0,    2] =  3.3029134982598407e-15
Trhs[    0,    3] =  8.8817841970012523e-16
Trhs[    0,    4] = -5.5511151231257827e-17
Trhs[    0,    5] =  8.3266726846886741e-17
Trhs[    0,    6] =  1.1102230246251565e-16
Trhs[    0,    7] =  0.0000000000000000e+00
Trhs[    0,    8] =  0.0000000000000000e+00
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -8.1442994337699641e-19
Tsol[    0,    1] =  1.1411766090008437e-17
Tsol[    0,    2] =  4.3555788772526279e-16
Tsol[    0,    3] = -3.3513292140937855e-16
Tsol[    0,    4] = -2.2795114084051390e-15
Tsol[    0,    5] =  4.4610524571525030e-15
Tsol[    0,    6] = -1.3093689455330033e-15
Tsol[    0,    7] =  3.8428673965482269e-17
Tsol[    0,    8] =  2.9153184255551657e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-8.1442994337699641e-19
  SOL[ 0][ 0][    2]= 1.1411766090008437e-17
  SOL[ 0][ 0][    3]= 4.3555788772526279e-16
  SOL[ 0][ 0][    4]=-3.3513292140937855e-16

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]=-2.2795114084051390e-15
  SOL[ 0][ 1][    2]= 4.4610524571525030e-15

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.3093689455330033e-15

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 3.8428673965482269e-17
  SOL[ 0][ 3][    2]= 2.9153184255551657e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 1.3877787807814457e-16
  resid[ 0][    2]=-3.0531133177191805e-16
  resid[ 0][    3]=-2.7755575615628914e-17
  resid[ 0][    4]= 1.3877787807814457e-16

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 0.0000000000000000e+00
  resid[ 3][    2]= 8.8817841970012523e-16

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]=-1.3877787807814457e-17
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 1.0408340855860843e-17

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-8.8817841970012523e-16
  resid[ 6][    2]= 4.4408920985006262e-16

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.053113e-16
max-norm resid_s  0.000000e+00
max-norm resid_c  0.000000e+00
max-norm resid_d  8.881784e-16
max-norm resid_zL 1.387779e-17
max-norm resid_zU 0.000000e+00
max-norm resid_vL 8.881784e-16
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.91e+01 nrm_sol = 4.87e+01 nrm_resid = 8.88e-16
residual_ratio = 1.141059e-17
*** Step Calculated for Iteration: 1

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 7.3517438910112032e-02
  delta[ 0][    2]= 8.1448495331724421e-02
  delta[ 0][    3]=-5.3706591213298127e-01
  delta[ 0][    4]=-6.1584033961326179e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.8701586675493374e+01
  delta[ 1][    2]=-6.1368223828224213e+00

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-3.9851461831737849e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]= 6.9866395943857559e-02
  delta[ 3][    2]= 1.2782529562891512e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-3.0628407234891788e+00
  delta[ 4][    2]=-2.5451755439187052e+00
  delta[ 4][    3]= 8.7315965802105266e-02
  delta[ 4][    4]= 2.2438570879883518e-02

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-1.0151022791300303e-01
  delta[ 6][    2]=-1.7208600583849082e-01

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 1:
**************************************************

--> Starting line search in iteration 1 <--
Acceptable Check:
  overall_error =  2.9236515515232938e+01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  2.3566895846196956e-01   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  9.9794031750440659e-01   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.9236515515232938e+01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  7.8782624220870048e+01   last_obj_val                =  1.3080000000000001e+02
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  6.6026457348383438e-01 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 1
The current filter has 0 entries.
Relative step size for delta_x = 3.276278e-01
minimal step size ALPHA_MIN = 1.274948E-11
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  3.7204157752851408e+01  (reference  7.8989662078651492e+01):
  New values of constraint violation =  7.6333501447223284e-03  (reference  1.0884783964214879e+00):
reference_theta = 1.088478e+00 reference_gradBarrTDelta = -4.268716e+01
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 1.088478e+00 reference_gradBarrTDelta = -4.268716e+01
Convergence Check:
  overall_error =  5.7343015345312738e+00   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  1.5122408611053844e+00   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  5.7343015345312738e+00   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 2
Acceptable Check:
  overall_error =  5.7343015345312738e+00   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  1.5122408611053844e+00   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  5.7343015345312738e+00   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  3.6879120268713557e+01   last_obj_val                =  7.8782624220870048e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.1362392499287837e+00 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 2

**************************************************
*** Update HessianMatrix for Iteration 2:
**************************************************



**************************************************
*** Summary of Iteration: 2:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   2  3.6879120e+01 0.00e+00 1.51e+00  -1.0 4.87e+01    -  5.06e-01 1.00e+00f  1 Nhj 

**************************************************
*** Beginning Iteration 2 from the following point:
**************************************************

Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 5.4570254502279858e-01
||curr_s||_inf   = 3.4759317018643443e+01
||curr_y_c||_inf = 2.0440023907269559e+01
||curr_y_d||_inf = 5.2759627922295460e-01
||curr_z_L||_inf = 3.1552994540701773e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 6.1268377632380122e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 6.1584033961326179e-01
||delta_s||_inf   = 4.8701586675493374e+01
||delta_y_c||_inf = 3.9851461831737849e+00
||delta_y_d||_inf = 1.2782529562891512e-01
||delta_z_L||_inf = 3.0628407234891788e+00
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 1.7208600583849082e-01
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 8.3517429010112110e-02
curr_x[    2]= 1.0692530334843335e-01
curr_x[    3]= 5.4570254502279858e-01
curr_x[    4]= 2.6385472261865595e-01
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 3.4759317018643443e+01
curr_s[    2]= 7.1911811746318008e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-2.0440023907269559e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-3.6656582009296712e-01
curr_y_d[    2]=-5.2759627922295460e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 8.3517439010112104e-02
curr_slack_x_L[    2]= 1.0692531334843335e-01
curr_slack_x_L[    3]= 5.4570255502279863e-01
curr_slack_x_L[    4]= 2.6385473261865594e-01
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 1.5640854064665310e-02
curr_z_L[    2]= 2.5493001105765334e-01
curr_z_L[    3]= 5.4143311321117236e-02
curr_z_L[    4]= 3.1552994540701773e-01
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 1.3759317228643443e+01
curr_slack_s_L[    2]= 2.1911812246318005e+00
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.1675770964811376e-01
curr_v_L[    2]= 6.1268377632380122e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-1.5122408611053844e+00
curr_grad_lag_x[    2]=-1.2566872909386086e+00
curr_grad_lag_x[    3]= 4.6751419585912148e-02
curr_grad_lag_x[    4]= 2.6270196542244051e-04
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-5.0191889555146640e-02
curr_grad_lag_s[    2]=-8.5087497100846621e-02

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 7.3517438910112032e-02
  delta[ 0][    2]= 8.1448495331724421e-02
  delta[ 0][    3]=-5.3706591213298127e-01
  delta[ 0][    4]=-6.1584033961326179e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.8701586675493374e+01
  delta[ 1][    2]=-6.1368223828224213e+00

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-3.9851461831737849e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]= 6.9866395943857559e-02
  delta[ 3][    2]= 1.2782529562891512e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-3.0628407234891788e+00
  delta[ 4][    2]=-2.5451755439187052e+00
  delta[ 4][    3]= 8.7315965802105266e-02
  delta[ 4][    4]= 2.2438570879883518e-02

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-1.0151022791300303e-01
  delta[ 6][    2]=-1.7208600583849082e-01

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 2:

                                   (scaled)                 (unscaled)
Objective...............:   3.6879120268713557e+01    3.6879120268713557e+01
Dual infeasibility......:   1.5122408611053844e+00    1.5122408611053844e+00
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   5.7343015345312738e+00    5.7343015345312738e+00
Overall NLP error.......:   5.7343015345312738e+00    5.7343015345312738e+00

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 3.4751683668498721e+01
curr_d[    2]= 7.1911811746318008e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-7.6333501447223284e-03
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1984490688314045e+01  (0)
jac_d[    1,    2]= 1.1886526157451877e+01  (1)
jac_d[    1,    3]= 3.4380626811447790e+01  (2)
jac_d[    1,    4]= 5.1991503947462043e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 6.8050211560192517e-02  (0)
W[    2,    1]=-1.8774203919451363e-05  (1)
W[    3,    1]=-1.0338017881601843e-02  (2)
W[    4,    1]=-1.5117640031252677e-04  (3)
W[    2,    2]= 4.6175283220970753e-02  (4)
W[    3,    2]=-8.9812383693679432e-03  (5)
W[    4,    2]=-1.3133574565063664e-04  (6)
W[    3,    3]= 3.8309720419374964e-02  (7)
W[    4,    3]=-7.2320045784901130e-02  (8)
W[    4,    4]= 1.4967290192030422e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 2:
**************************************************

Optimality Error for Barrier Sub-problem = 5.634302e+00
Barrier Parameter: 1.000000e-01

**************************************************
*** Solving the Primal Dual System for Iteration 2:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-2.6939537294226188e+00
  RHS[ 0][ 0][    2]=-1.9369885169297627e+00
  RHS[ 0][ 0][    3]=-8.2354281539443686e-02
  RHS[ 0][ 0][    4]=-6.3202776180545830e-02

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 3.5929901760405991e-01
  RHS[ 0][ 1][    2]= 4.8195979434682179e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-7.6333501447223284e-03
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 6.8050211560192517e-02  (0)
    Term: 0[    2,    1]=-1.8774203919451363e-05  (1)
    Term: 0[    3,    1]=-1.0338017881601843e-02  (2)
    Term: 0[    4,    1]=-1.5117640031252677e-04  (3)
    Term: 0[    2,    2]= 4.6175283220970753e-02  (4)
    Term: 0[    3,    2]=-8.9812383693679432e-03  (5)
    Term: 0[    4,    2]=-1.3133574565063664e-04  (6)
    Term: 0[    3,    3]= 3.8309720419374964e-02  (7)
    Term: 0[    4,    3]=-7.2320045784901130e-02  (8)
    Term: 0[    4,    4]= 1.4967290192030422e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.8727650476413138e-01
      Term: 1[    2]= 2.3841876453232627e+00
      Term: 1[    3]= 9.9217624734879994e-02
      Term: 1[    4]= 1.1958472083312865e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 3.0289127194518699e-02
    KKT[1][1][    2]= 2.7961346575829427e-01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1984490688314045e+01  (0)
  KKT[3][0][    1,    2]= 1.1886526157451877e+01  (1)
  KKT[3][0][    1,    3]= 3.4380626811447790e+01  (2)
  KKT[3][0][    1,    4]= 5.1991503947462043e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   6.805021156019252e-02
(1) KKT[2][1] =  -1.877420391945136e-05
(2) KKT[3][1] =  -1.033801788160184e-02
(3) KKT[4][1] =  -1.511764003125268e-04
(4) KKT[2][2] =   4.617528322097075e-02
(5) KKT[3][2] =  -8.981238369367943e-03
(6) KKT[4][2] =  -1.313357456506366e-04
(7) KKT[3][3] =   3.830972041937496e-02
(8) KKT[4][3] =  -7.232004578490113e-02
(9) KKT[4][4] =   1.496729019203042e-01
(10) KKT[1][1] =   1.872765047641314e-01
(11) KKT[2][2] =   2.384187645323263e+00
(12) KKT[3][3] =   9.921762473487999e-02
(13) KKT[4][4] =   1.195847208331287e+00
(14) KKT[5][5] =   3.028912719451870e-02
(15) KKT[6][6] =   2.796134657582943e-01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.198449068831404e+01
(22) KKT[8][2] =   1.188652615745188e+01
(23) KKT[8][3] =   3.438062681144779e+01
(24) KKT[8][4] =   5.199150394746204e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -2.6939537294226188e+00
Trhs[    0,    1] = -1.9369885169297627e+00
Trhs[    0,    2] = -8.2354281539443686e-02
Trhs[    0,    3] = -6.3202776180545830e-02
Trhs[    0,    4] =  3.5929901760405991e-01
Trhs[    0,    5] =  4.8195979434682179e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -7.6333501447223284e-03
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -5.3410710546106044e-01
Tsol[    0,    1] =  8.2964316391840598e-02
Tsol[    0,    2] =  2.4091324935222547e-01
Tsol[    0,    3] =  2.1022953971699535e-01
Tsol[    0,    4] =  1.3805687699092422e+01
Tsol[    0,    5] =  2.1835892986756651e+00
Tsol[    0,    6] = -3.5562863484172742e+00
Tsol[    0,    7] =  5.8863213121552627e-02
Tsol[    0,    8] =  1.2860117724860409e-01
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-5.3410710546106044e-01
  SOL[ 0][ 0][    2]= 8.2964316391840598e-02
  SOL[ 0][ 0][    3]= 2.4091324935222547e-01
  SOL[ 0][ 0][    4]= 2.1022953971699535e-01

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 1.3805687699092422e+01
  SOL[ 0][ 1][    2]= 2.1835892986756651e+00

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-3.5562863484172742e+00

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 5.8863213121552627e-02
  SOL[ 0][ 3][    2]= 1.2860117724860409e-01
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.5543122344752192e-15
  resid[ 0][    2]= 0.0000000000000000e+00
  resid[ 0][    3]=-2.4494295480792516e-15
  resid[ 0][    4]=-5.8189130597297023e-16

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 3.9898639947466563e-17
  resid[ 1][    2]=-7.6327832942979512e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 9.7144514654701197e-16

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 1.7763568394002505e-15
  resid[ 3][    2]= 0.0000000000000000e+00

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]=-1.3877787807814457e-17
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  2.449430e-15
max-norm resid_s  7.632783e-17
max-norm resid_c  9.714451e-16
max-norm resid_d  1.776357e-15
max-norm resid_zL 1.387779e-17
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 5.63e+00 nrm_sol = 1.38e+01 nrm_resid = 2.45e-15
residual_ratio = 1.259995e-16

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-1.5543122344752192e-15
  RHS[ 0][ 0][    2]= 0.0000000000000000e+00
  RHS[ 0][ 0][    3]=-2.4748605959643667e-15
  RHS[ 0][ 0][    4]=-5.8189130597297023e-16

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 3.9898639947466563e-17
  RHS[ 0][ 1][    2]=-7.6327832942979512e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 9.7144514654701197e-16

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 1.7763568394002505e-15
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 6.8050211560192517e-02  (0)
    Term: 0[    2,    1]=-1.8774203919451363e-05  (1)
    Term: 0[    3,    1]=-1.0338017881601843e-02  (2)
    Term: 0[    4,    1]=-1.5117640031252677e-04  (3)
    Term: 0[    2,    2]= 4.6175283220970753e-02  (4)
    Term: 0[    3,    2]=-8.9812383693679432e-03  (5)
    Term: 0[    4,    2]=-1.3133574565063664e-04  (6)
    Term: 0[    3,    3]= 3.8309720419374964e-02  (7)
    Term: 0[    4,    3]=-7.2320045784901130e-02  (8)
    Term: 0[    4,    4]= 1.4967290192030422e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.8727650476413138e-01
      Term: 1[    2]= 2.3841876453232627e+00
      Term: 1[    3]= 9.9217624734879994e-02
      Term: 1[    4]= 1.1958472083312865e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 3.0289127194518699e-02
    KKT[1][1][    2]= 2.7961346575829427e-01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1984490688314045e+01  (0)
  KKT[3][0][    1,    2]= 1.1886526157451877e+01  (1)
  KKT[3][0][    1,    3]= 3.4380626811447790e+01  (2)
  KKT[3][0][    1,    4]= 5.1991503947462043e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   6.805021156019252e-02
(1) KKT[2][1] =  -1.877420391945136e-05
(2) KKT[3][1] =  -1.033801788160184e-02
(3) KKT[4][1] =  -1.511764003125268e-04
(4) KKT[2][2] =   4.617528322097075e-02
(5) KKT[3][2] =  -8.981238369367943e-03
(6) KKT[4][2] =  -1.313357456506366e-04
(7) KKT[3][3] =   3.830972041937496e-02
(8) KKT[4][3] =  -7.232004578490113e-02
(9) KKT[4][4] =   1.496729019203042e-01
(10) KKT[1][1] =   1.872765047641314e-01
(11) KKT[2][2] =   2.384187645323263e+00
(12) KKT[3][3] =   9.921762473487999e-02
(13) KKT[4][4] =   1.195847208331287e+00
(14) KKT[5][5] =   3.028912719451870e-02
(15) KKT[6][6] =   2.796134657582943e-01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.198449068831404e+01
(22) KKT[8][2] =   1.188652615745188e+01
(23) KKT[8][3] =   3.438062681144779e+01
(24) KKT[8][4] =   5.199150394746204e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -1.5543122344752192e-15
Trhs[    0,    1] =  0.0000000000000000e+00
Trhs[    0,    2] = -2.4748605959643667e-15
Trhs[    0,    3] = -5.8189130597297023e-16
Trhs[    0,    4] =  3.9898639947466563e-17
Trhs[    0,    5] = -7.6327832942979512e-17
Trhs[    0,    6] =  9.7144514654701197e-16
Trhs[    0,    7] =  1.7763568394002505e-15
Trhs[    0,    8] =  0.0000000000000000e+00
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  5.8320416710109614e-16
Tsol[    0,    1] =  8.6651383551643011e-16
Tsol[    0,    2] = -6.4067518446881190e-16
Tsol[    0,    3] =  1.6240232839829759e-16
Tsol[    0,    4] =  1.9296143156882084e-15
Tsol[    0,    5] = -7.0652445746149666e-16
Tsol[    0,    6] = -1.6532673771392149e-15
Tsol[    0,    7] =  1.8547693496777729e-17
Tsol[    0,    8] = -1.2122591925082811e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 5.8320416710109614e-16
  SOL[ 0][ 0][    2]= 8.6651383551643011e-16
  SOL[ 0][ 0][    3]=-6.4067518446881190e-16
  SOL[ 0][ 0][    4]= 1.6240232839829759e-16

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 1.9296143156882084e-15
  SOL[ 0][ 1][    2]=-7.0652445746149666e-16

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.6532673771392149e-15

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 1.8547693496777729e-17
  SOL[ 0][ 3][    2]=-1.2122591925082811e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 2.2204460492503131e-16
  resid[ 0][    2]= 6.6613381477509392e-16
  resid[ 0][    3]= 2.4286128663675299e-16
  resid[ 0][    4]=-8.2290944891649787e-17

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 1.7347234759768071e-18
  resid[ 1][    2]= 6.9388939039072284e-18

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 5.5511151231257827e-17

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 1.7763568394002505e-15
  resid[ 3][    2]= 0.0000000000000000e+00

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-8.3266726846886741e-17
  resid[ 6][    2]= 2.4980018054066022e-16

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  6.661338e-16
max-norm resid_s  6.938894e-18
max-norm resid_c  5.551115e-17
max-norm resid_d  1.776357e-15
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 2.498002e-16
max-norm resid_vU 0.000000e+00
nrm_rhs = 5.63e+00 nrm_sol = 1.38e+01 nrm_resid = 1.78e-15
residual_ratio = 9.137643e-17
*** Step Calculated for Iteration: 2

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 5.3410710546106099e-01
  delta[ 0][    2]=-8.2964316391839737e-02
  delta[ 0][    3]=-2.4091324935222611e-01
  delta[ 0][    4]=-2.1022953971699518e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-1.3805687699092420e+01
  delta[ 1][    2]=-2.1835892986756660e+00

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 3.5562863484172724e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-5.8863213121552606e-02
  delta[ 3][    2]=-1.2860117724860420e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 1.0816881564367995e+00
  delta[ 4][    2]= 8.7810472413526852e-01
  delta[ 4][    3]= 1.5300954149324555e-01
  delta[ 4][    4]= 3.1486888632530829e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 8.6723235664059681e-03
  delta[ 6][    2]= 4.3514680147757591e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 2:
**************************************************

--> Starting line search in iteration 2 <--
Acceptable Check:
  overall_error =  5.7343015345312738e+00   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  1.5122408611053844e+00   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  5.7343015345312738e+00   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  3.6879120268713557e+01   last_obj_val                =  7.8782624220870048e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.1362392499287837e+00 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 2
The current filter has 0 entries.
Relative step size for delta_x = 4.929382e-01
minimal step size ALPHA_MIN = 5.260747E-13
Starting checks for alpha (primal) = 9.87e-01
Checking acceptability for trial step size alpha_primal_test= 9.866748e-01:
  New values of barrier function     =  3.1307833714662319e+01  (reference  3.7204157752851408e+01):
  New values of constraint violation =  5.4958283264768149e-02  (reference  7.6333501447223284e-03):
reference_theta = 7.633350e-03 reference_gradBarrTDelta = -7.255006e+00
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 7.633350e-03 reference_gradBarrTDelta = -7.255006e+00
Convergence Check:
  overall_error =  6.6992754355230544e-01   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  7.3586884616349546e-02   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  6.6992754355230544e-01   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 3
Acceptable Check:
  overall_error =  6.6992754355230544e-01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  7.3586884616349546e-02   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  6.6992754355230544e-01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9955742525783503e+01   last_obj_val                =  3.6879120268713557e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  2.3112021800063762e-01 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 3

**************************************************
*** Update HessianMatrix for Iteration 3:
**************************************************



**************************************************
*** Summary of Iteration: 3:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   3  2.9955743e+01 0.00e+00 7.36e-02  -1.0 1.38e+01    -  1.00e+00 9.87e-01f  1 

**************************************************
*** Beginning Iteration 3 from the following point:
**************************************************

Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 6.1050744687125991e-01
||curr_s||_inf   = 2.1137592962286437e+01
||curr_y_c||_inf = 1.6931125809660543e+01
||curr_y_d||_inf = 6.5448381919811305e-01
||curr_z_L||_inf = 1.1330347351929220e+00
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 6.5619845647155883e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 5.3410710546106099e-01
||delta_s||_inf   = 1.3805687699092420e+01
||delta_y_c||_inf = 3.5562863484172724e+00
||delta_y_d||_inf = 1.2860117724860420e-01
||delta_z_L||_inf = 1.0816881564367995e+00
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 4.3514680147757591e-02
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.1050744687125991e-01
curr_x[    2]= 2.5066503624300032e-02
curr_x[    3]= 3.0799951452384799e-01
curr_x[    4]= 5.6426534980591969e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1137592962286437e+01
curr_s[    2]= 5.0366886547894598e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.6931125809660543e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.2464466873047713e-01
curr_y_d[    2]=-6.5448381919811305e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.1050745687125996e-01
curr_slack_x_L[    2]= 2.5066513624300034e-02
curr_slack_x_L[    3]= 3.0799952452384799e-01
curr_slack_x_L[    4]= 5.6426544980591971e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 1.0973290105014648e+00
curr_z_L[    2]= 1.1330347351929220e+00
curr_z_L[    3]= 2.0715285281436280e-01
curr_z_L[    4]= 6.3039883173232603e-01
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 1.3759317228643653e-01
curr_slack_s_L[    2]= 3.6688704789459514e-02
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.2543003321451972e-01
curr_v_L[    2]= 6.5619845647155883e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]= 3.8723083528253710e-03
curr_grad_lag_x[    2]=-3.0218544358913135e-02
curr_grad_lag_x[    3]=-7.3586884616349546e-02
curr_grad_lag_x[    4]=-1.9277398771568310e-02
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-7.8536448404259440e-04
curr_grad_lag_s[    2]=-1.7146372734457849e-03

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 5.3410710546106099e-01
  delta[ 0][    2]=-8.2964316391839737e-02
  delta[ 0][    3]=-2.4091324935222611e-01
  delta[ 0][    4]=-2.1022953971699518e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-1.3805687699092420e+01
  delta[ 1][    2]=-2.1835892986756660e+00

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 3.5562863484172724e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-5.8863213121552606e-02
  delta[ 3][    2]=-1.2860117724860420e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 1.0816881564367995e+00
  delta[ 4][    2]= 8.7810472413526852e-01
  delta[ 4][    3]= 1.5300954149324555e-01
  delta[ 4][    4]= 3.1486888632530829e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 8.6723235664059681e-03
  delta[ 6][    2]= 4.3514680147757591e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 3:

                                   (scaled)                 (unscaled)
Objective...............:   2.9955742525783503e+01    2.9955742525783503e+01
Dual infeasibility......:   7.3586884616349546e-02    7.3586884616349546e-02
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   6.6992754355230544e-01    6.6992754355230544e-01
Overall NLP error.......:   6.6992754355230544e-01    6.6992754355230544e-01

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.1082634679021670e+01
curr_d[    2]= 5.0366886547894607e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-5.4958283264767260e-02
curr_d - curr_s[    2]= 8.8817841970012523e-16

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1803657166624788e+01  (0)
jac_d[    1,    2]= 1.1894529671351799e+01  (1)
jac_d[    1,    3]= 3.4547797039114144e+01  (2)
jac_d[    1,    4]= 5.2059817113711276e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2961977264479624e-01  (0)
W[    2,    1]=-1.9359244327110821e-04  (1)
W[    3,    1]=-2.5665216490371118e-01  (2)
W[    4,    1]=-1.4220540729077420e-03  (3)
W[    2,    2]= 9.2665923029522784e-02  (4)
W[    3,    2]=-7.1506133743770199e-03  (5)
W[    4,    2]=-3.9620000387046715e-05  (6)
W[    3,    3]= 5.1893307868279581e-01  (7)
W[    4,    3]=-5.2525598112222238e-02  (8)
W[    4,    4]= 3.0211010583495224e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 3:
**************************************************

Optimality Error for Barrier Sub-problem = 5.699275e-01
  sub_problem_error < kappa_eps * mu (1.000000e+00)
Updating mu=   1.0000000000000001e-01 and tau=   9.8999999999999999e-01 to new_mu=   2.0000000000000004e-02 and new_tau=   9.8999999999999999e-01
Barrier Parameter: 2.000000e-02

**************************************************
*** Solving the Primal Dual System for Iteration 3:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 1.0684418862324441e+00
  RHS[ 0][ 0][    2]= 3.0493917903812667e-01
  RHS[ 0][ 0][    3]= 6.8631003019044179e-02
  RHS[ 0][ 0][    4]= 2.5667852454646362e-01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 2.7928881895233321e-01
  RHS[ 0][ 1][    2]= 1.0935711666036238e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-5.4958283264767260e-02
  RHS[ 0][ 3][    2]= 8.8817841970012523e-16

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2961977264479624e-01  (0)
    Term: 0[    2,    1]=-1.9359244327110821e-04  (1)
    Term: 0[    3,    1]=-2.5665216490371118e-01  (2)
    Term: 0[    4,    1]=-1.4220540729077420e-03  (3)
    Term: 0[    2,    2]= 9.2665923029522784e-02  (4)
    Term: 0[    3,    2]=-7.1506133743770199e-03  (5)
    Term: 0[    4,    2]=-3.9620000387046715e-05  (6)
    Term: 0[    3,    3]= 5.1893307868279581e-01  (7)
    Term: 0[    4,    3]=-5.2525598112222238e-02  (8)
    Term: 0[    4,    4]= 3.0211010583495224e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.7974047624660918e+00
      Term: 1[    2]= 4.5201129769180703e+01
      Term: 1[    3]= 6.7257523573976563e-01
      Term: 1[    4]= 1.1172026072997257e+01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 3.0919414542523573e+00
    KKT[1][1][    2]= 1.7885571601319690e+01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1803657166624788e+01  (0)
  KKT[3][0][    1,    2]= 1.1894529671351799e+01  (1)
  KKT[3][0][    1,    3]= 3.4547797039114144e+01  (2)
  KKT[3][0][    1,    4]= 5.2059817113711276e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.296197726447962e-01
(1) KKT[2][1] =  -1.935924432711082e-04
(2) KKT[3][1] =  -2.566521649037112e-01
(3) KKT[4][1] =  -1.422054072907742e-03
(4) KKT[2][2] =   9.266592302952278e-02
(5) KKT[3][2] =  -7.150613374377020e-03
(6) KKT[4][2] =  -3.962000038704671e-05
(7) KKT[3][3] =   5.189330786827958e-01
(8) KKT[4][3] =  -5.252559811222224e-02
(9) KKT[4][4] =   3.021101058349522e-01
(10) KKT[1][1] =   1.797404762466092e+00
(11) KKT[2][2] =   4.520112976918070e+01
(12) KKT[3][3] =   6.725752357397656e-01
(13) KKT[4][4] =   1.117202607299726e+01
(14) KKT[5][5] =   3.091941454252357e+00
(15) KKT[6][6] =   1.788557160131969e+01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.180365716662479e+01
(22) KKT[8][2] =   1.189452967135180e+01
(23) KKT[8][3] =   3.454779703911414e+01
(24) KKT[8][4] =   5.205981711371128e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  1.0684418862324441e+00
Trhs[    0,    1] =  3.0493917903812667e-01
Trhs[    0,    2] =  6.8631003019044179e-02
Trhs[    0,    3] =  2.5667852454646362e-01
Trhs[    0,    4] =  2.7928881895233321e-01
Trhs[    0,    5] =  1.0935711666036238e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -5.4958283264767260e-02
Trhs[    0,    8] =  8.8817841970012523e-16
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  9.3943926802057334e-03
Tsol[    0,    1] = -1.2165304472800769e-02
Tsol[    0,    2] =  4.6683086101839966e-03
Tsol[    0,    3] = -1.8973968175889596e-03
Tsol[    0,    4] =  8.3647545802574316e-02
Tsol[    0,    5] =  2.8330078269647872e-03
Tsol[    0,    6] =  1.4303226837705822e+00
Tsol[    0,    7] = -2.0655504538880903e-02
Tsol[    0,    8] = -5.8687152324084585e-02
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 9.3943926802057334e-03
  SOL[ 0][ 0][    2]=-1.2165304472800769e-02
  SOL[ 0][ 0][    3]= 4.6683086101839966e-03
  SOL[ 0][ 0][    4]=-1.8973968175889596e-03

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 8.3647545802574316e-02
  SOL[ 0][ 1][    2]= 2.8330078269647872e-03

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]= 1.4303226837705822e+00

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-2.0655504538880903e-02
  SOL[ 0][ 3][    2]=-5.8687152324084585e-02
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-3.2742905609062234e-16
  resid[ 0][    2]=-1.2143064331837650e-15
  resid[ 0][    3]= 1.7486012637846216e-15
  resid[ 0][    4]= 9.2773011495239643e-15

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 3.8163916471489756e-17
  resid[ 1][    2]= 2.7755575615628914e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 1.3010426069826053e-18

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 1.3877787807814457e-17
  resid[ 3][    2]=-7.1991024253037494e-17

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  9.277301e-15
max-norm resid_s  3.816392e-17
max-norm resid_c  1.301043e-18
max-norm resid_d  7.199102e-17
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 6.50e-01 nrm_sol = 1.43e+00 nrm_resid = 9.28e-15
residual_ratio = 4.459704e-15

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-3.2742905609062234e-16
  RHS[ 0][ 0][    2]=-1.2143064331837650e-15
  RHS[ 0][ 0][    3]= 1.7486012637846216e-15
  RHS[ 0][ 0][    4]= 9.2773011495239643e-15

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 3.8163916471489756e-17
  RHS[ 0][ 1][    2]= 2.7755575615628914e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 1.3010426069826053e-18

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 1.3877787807814457e-17
  RHS[ 0][ 3][    2]=-7.1991024253037494e-17

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2961977264479624e-01  (0)
    Term: 0[    2,    1]=-1.9359244327110821e-04  (1)
    Term: 0[    3,    1]=-2.5665216490371118e-01  (2)
    Term: 0[    4,    1]=-1.4220540729077420e-03  (3)
    Term: 0[    2,    2]= 9.2665923029522784e-02  (4)
    Term: 0[    3,    2]=-7.1506133743770199e-03  (5)
    Term: 0[    4,    2]=-3.9620000387046715e-05  (6)
    Term: 0[    3,    3]= 5.1893307868279581e-01  (7)
    Term: 0[    4,    3]=-5.2525598112222238e-02  (8)
    Term: 0[    4,    4]= 3.0211010583495224e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.7974047624660918e+00
      Term: 1[    2]= 4.5201129769180703e+01
      Term: 1[    3]= 6.7257523573976563e-01
      Term: 1[    4]= 1.1172026072997257e+01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 3.0919414542523573e+00
    KKT[1][1][    2]= 1.7885571601319690e+01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1803657166624788e+01  (0)
  KKT[3][0][    1,    2]= 1.1894529671351799e+01  (1)
  KKT[3][0][    1,    3]= 3.4547797039114144e+01  (2)
  KKT[3][0][    1,    4]= 5.2059817113711276e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.296197726447962e-01
(1) KKT[2][1] =  -1.935924432711082e-04
(2) KKT[3][1] =  -2.566521649037112e-01
(3) KKT[4][1] =  -1.422054072907742e-03
(4) KKT[2][2] =   9.266592302952278e-02
(5) KKT[3][2] =  -7.150613374377020e-03
(6) KKT[4][2] =  -3.962000038704671e-05
(7) KKT[3][3] =   5.189330786827958e-01
(8) KKT[4][3] =  -5.252559811222224e-02
(9) KKT[4][4] =   3.021101058349522e-01
(10) KKT[1][1] =   1.797404762466092e+00
(11) KKT[2][2] =   4.520112976918070e+01
(12) KKT[3][3] =   6.725752357397656e-01
(13) KKT[4][4] =   1.117202607299726e+01
(14) KKT[5][5] =   3.091941454252357e+00
(15) KKT[6][6] =   1.788557160131969e+01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.180365716662479e+01
(22) KKT[8][2] =   1.189452967135180e+01
(23) KKT[8][3] =   3.454779703911414e+01
(24) KKT[8][4] =   5.205981711371128e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -3.2742905609062234e-16
Trhs[    0,    1] = -1.2143064331837650e-15
Trhs[    0,    2] =  1.7486012637846216e-15
Trhs[    0,    3] =  9.2773011495239643e-15
Trhs[    0,    4] =  3.8163916471489756e-17
Trhs[    0,    5] =  2.7755575615628914e-17
Trhs[    0,    6] =  1.3010426069826053e-18
Trhs[    0,    7] =  1.3877787807814457e-17
Trhs[    0,    8] = -7.1991024253037494e-17
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -1.2088590988335858e-18
Tsol[    0,    1] =  5.4906290356444400e-18
Tsol[    0,    2] = -1.1644043812575272e-17
Tsol[    0,    3] =  8.6633164827469660e-18
Tsol[    0,    4] =  8.5896313144261566e-17
Tsol[    0,    5] = -1.8028403966685276e-17
Tsol[    0,    6] = -2.2070223941380571e-15
Tsol[    0,    7] =  2.2742245490669423e-16
Tsol[    0,    8] = -3.5020388561929431e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-1.2088590988335858e-18
  SOL[ 0][ 0][    2]= 5.4906290356444400e-18
  SOL[ 0][ 0][    3]=-1.1644043812575272e-17
  SOL[ 0][ 0][    4]= 8.6633164827469660e-18

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 8.5896313144261566e-17
  SOL[ 0][ 1][    2]=-1.8028403966685276e-17

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-2.2070223941380571e-15

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 2.2742245490669423e-16
  SOL[ 0][ 3][    2]=-3.5020388561929431e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.0538445116559103e-16
  resid[ 0][    2]= 1.1796119636642288e-16
  resid[ 0][    3]=-1.3877787807814457e-16
  resid[ 0][    4]= 6.2450045135165055e-17

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 4.3368086899420177e-19

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-2.7755575615628914e-17
  resid[ 3][    2]=-1.8214596497756474e-17

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]=-3.4694469519536142e-18
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 2.1684043449710089e-18
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  1.387779e-16
max-norm resid_s  0.000000e+00
max-norm resid_c  4.336809e-19
max-norm resid_d  2.775558e-17
max-norm resid_zL 3.469447e-18
max-norm resid_zU 0.000000e+00
max-norm resid_vL 2.168404e-18
max-norm resid_vU 0.000000e+00
nrm_rhs = 6.50e-01 nrm_sol = 1.43e+00 nrm_resid = 1.39e-16
residual_ratio = 6.671211e-17
*** Step Calculated for Iteration: 3

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]=-9.3943926802057352e-03
  delta[ 0][    2]= 1.2165304472800774e-02
  delta[ 0][    3]=-4.6683086101840078e-03
  delta[ 0][    4]= 1.8973968175889683e-03

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-8.3647545802574233e-02
  delta[ 1][    2]=-2.8330078269648055e-03

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-1.4303226837705845e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]= 2.0655504538881132e-02
  delta[ 3][    2]= 5.8687152324084238e-02

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-1.0476838517357405e+00
  delta[ 4][    2]=-8.8504302955370195e-01
  delta[ 4][    3]=-1.3907789887139324e-01
  delta[ 4][    4]=-2.9715349003495795e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-2.1440669022923728e-02
  delta[ 6][    2]=-6.0401589597530024e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 3:
**************************************************

--> Starting line search in iteration 3 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  6.6992754355230544e-01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  7.3586884616349546e-02   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  6.6992754355230544e-01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9955742525783503e+01   last_obj_val                =  3.6879120268713557e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  2.3112021800063762e-01 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 3
The current filter has 0 entries.
Relative step size for delta_x = 1.186782e-02
minimal step size ALPHA_MIN = 4.230850E-09
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  3.0228106092943143e+01  (reference  3.0226160763559268e+01):
  New values of constraint violation =  2.0173667050649158e-05  (reference  5.4958283264768149e-02):
reference_theta = 5.495828e-02 reference_gradBarrTDelta = -6.494946e-03
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 5.495828e-02 reference_gradBarrTDelta = -6.494946e-03
Convergence Check:
  overall_error =  2.9842353507915902e-02   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  3.9825445417251970e-05   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.9842353507915902e-02   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 4
Acceptable Check:
  overall_error =  2.9842353507915902e-02   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  3.9825445417251970e-05   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.9842353507915902e-02   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9945312615447051e+01   last_obj_val                =  2.9955742525783503e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  3.4829859585675562e-04 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 4

**************************************************
*** Update HessianMatrix for Iteration 4:
**************************************************



**************************************************
*** Summary of Iteration: 4:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   4  2.9945313e+01 0.00e+00 3.98e-05  -1.7 8.36e-02    -  1.00e+00 1.00e+00h  1 

**************************************************
*** Beginning Iteration 4 from the following point:
**************************************************

Current barrier parameter mu = 2.0000000000000004e-02
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 6.0111305419105421e-01
||curr_s||_inf   = 2.1053945416483863e+01
||curr_y_c||_inf = 1.8361448493431126e+01
||curr_y_d||_inf = 5.9579666687402877e-01
||curr_z_L||_inf = 3.3324534169736808e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.9579686687402877e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 1.2165304472800774e-02
||delta_s||_inf   = 8.3647545802574233e-02
||delta_y_c||_inf = 1.4303226837705845e+00
||delta_y_d||_inf = 5.8687152324084238e-02
||delta_z_L||_inf = 1.0476838517357405e+00
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 6.0401589597530024e-02
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.0111305419105421e-01
curr_x[    2]= 3.7231808097100805e-02
curr_x[    3]= 3.0333120591366397e-01
curr_x[    4]= 5.8323931798180940e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1053945416483863e+01
curr_s[    2]= 5.0338556469624951e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8361448493431126e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.0398916419159597e-01
curr_y_d[    2]=-5.9579666687402877e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.0111306419105426e-01
curr_slack_x_L[    2]= 3.7231818097100806e-02
curr_slack_x_L[    3]= 3.0333121591366397e-01
curr_slack_x_L[    4]= 5.8323941798180942e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 4.9645158765724284e-02
curr_z_L[    2]= 2.4799170563922002e-01
curr_z_L[    3]= 6.8074953942969557e-02
curr_z_L[    4]= 3.3324534169736808e-01
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 5.3945626483862696e-02
curr_slack_s_L[    2]= 3.3855696962494797e-02
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.0398936419159598e-01
curr_v_L[    2]= 5.9579686687402877e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-5.0734982659506045e-08
curr_grad_lag_x[    2]=-3.9825445417251970e-05
curr_grad_lag_x[    3]=-1.8922175486352222e-05
curr_grad_lag_x[    4]=-2.8665229490631994e-05
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-2.0000000000575113e-07
curr_grad_lag_s[    2]=-2.0000000000575113e-07

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]=-9.3943926802057352e-03
  delta[ 0][    2]= 1.2165304472800774e-02
  delta[ 0][    3]=-4.6683086101840078e-03
  delta[ 0][    4]= 1.8973968175889683e-03

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-8.3647545802574233e-02
  delta[ 1][    2]=-2.8330078269648055e-03

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-1.4303226837705845e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]= 2.0655504538881132e-02
  delta[ 3][    2]= 5.8687152324084238e-02

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-1.0476838517357405e+00
  delta[ 4][    2]=-8.8504302955370195e-01
  delta[ 4][    3]=-1.3907789887139324e-01
  delta[ 4][    4]=-2.9715349003495795e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-2.1440669022923728e-02
  delta[ 6][    2]=-6.0401589597530024e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 4:

                                   (scaled)                 (unscaled)
Objective...............:   2.9945312615447051e+01    2.9945312615447051e+01
Dual infeasibility......:   3.9825445417251970e-05    3.9825445417251970e-05
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   2.9842353507915902e-02    2.9842353507915902e-02
Overall NLP error.......:   2.9842353507915902e-02    2.9842353507915902e-02

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.1053925242816813e+01
curr_d[    2]= 5.0338556469624942e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-2.0173667049760979e-05
curr_d - curr_s[    2]=-8.8817841970012523e-16

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1803717741464771e+01  (0)
jac_d[    1,    2]= 1.1891750367844269e+01  (1)
jac_d[    1,    3]= 3.4548333741645472e+01  (2)
jac_d[    1,    4]= 5.2057829831274105e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2520753270018342e-01  (0)
W[    2,    1]=-2.8191643735521194e-04  (1)
W[    3,    1]=-2.4781273611387000e-01  (2)
W[    4,    1]=-1.4410901608037968e-03  (3)
W[    2,    2]= 8.9501988165133259e-02  (4)
W[    3,    2]=-1.0415428942485892e-02  (5)
W[    4,    2]=-6.0568203252760224e-05  (6)
W[    3,    3]= 5.0260734681363028e-01  (7)
W[    4,    3]=-5.3241209737109441e-02  (8)
W[    4,    4]= 2.9178817341042562e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 4:
**************************************************

Optimality Error for Barrier Sub-problem = 1.076682e-02
  sub_problem_error < kappa_eps * mu (2.000000e-01)
Updating mu=   2.0000000000000004e-02 and tau=   9.8999999999999999e-01 to new_mu=   2.8284271247461909e-03 and new_tau=   9.9717157287525382e-01
  sub_problem_error < kappa_eps * mu (2.828427e-02)
Updating mu=   2.8284271247461909e-03 and tau=   9.9717157287525382e-01 to new_mu=   1.5042412372345582e-04 and new_tau=   9.9984957587627654e-01
Barrier Parameter: 1.504241e-04

**************************************************
*** Solving the Primal Dual System for Iteration 4:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 4.9394866888990988e-02
  RHS[ 0][ 0][    2]= 2.4391167814604045e-01
  RHS[ 0][ 0][    3]= 6.7560126105459459e-02
  RHS[ 0][ 0][    4]= 3.3063756347666895e-01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.0120072604784363e-01
  RHS[ 0][ 1][    2]= 5.9135357202464622e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-2.0173667049760979e-05
  RHS[ 0][ 3][    2]=-8.8817841970012523e-16

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2520753270018342e-01  (0)
    Term: 0[    2,    1]=-2.8191643735521194e-04  (1)
    Term: 0[    3,    1]=-2.4781273611387000e-01  (2)
    Term: 0[    4,    1]=-1.4410901608037968e-03  (3)
    Term: 0[    2,    2]= 8.9501988165133259e-02  (4)
    Term: 0[    3,    2]=-1.0415428942485892e-02  (5)
    Term: 0[    4,    2]=-6.0568203252760224e-05  (6)
    Term: 0[    3,    3]= 5.0260734681363028e-01  (7)
    Term: 0[    4,    3]=-5.3241209737109441e-02  (8)
    Term: 0[    4,    4]= 2.9178817341042562e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 8.2588720364169893e-02
      Term: 1[    2]= 6.6607465956257128e+00
      Term: 1[    3]= 2.2442449168286549e-01
      Term: 1[    4]= 5.7136971786046464e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 7.4888251471589715e+00
    KKT[1][1][    2]= 1.7598127356056210e+01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1803717741464771e+01  (0)
  KKT[3][0][    1,    2]= 1.1891750367844269e+01  (1)
  KKT[3][0][    1,    3]= 3.4548333741645472e+01  (2)
  KKT[3][0][    1,    4]= 5.2057829831274105e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.252075327001834e-01
(1) KKT[2][1] =  -2.819164373552119e-04
(2) KKT[3][1] =  -2.478127361138700e-01
(3) KKT[4][1] =  -1.441090160803797e-03
(4) KKT[2][2] =   8.950198816513326e-02
(5) KKT[3][2] =  -1.041542894248589e-02
(6) KKT[4][2] =  -6.056820325276022e-05
(7) KKT[3][3] =   5.026073468136303e-01
(8) KKT[4][3] =  -5.324120973710944e-02
(9) KKT[4][4] =   2.917881734104256e-01
(10) KKT[1][1] =   8.258872036416989e-02
(11) KKT[2][2] =   6.660746595625713e+00
(12) KKT[3][3] =   2.244244916828655e-01
(13) KKT[4][4] =   5.713697178604646e+00
(14) KKT[5][5] =   7.488825147158972e+00
(15) KKT[6][6] =   1.759812735605621e+01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.180371774146477e+01
(22) KKT[8][2] =   1.189175036784427e+01
(23) KKT[8][3] =   3.454833374164547e+01
(24) KKT[8][4] =   5.205782983127411e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  4.9394866888990988e-02
Trhs[    0,    1] =  2.4391167814604045e-01
Trhs[    0,    2] =  6.7560126105459459e-02
Trhs[    0,    3] =  3.3063756347666895e-01
Trhs[    0,    4] =  4.0120072604784363e-01
Trhs[    0,    5] =  5.9135357202464622e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -2.0173667049760979e-05
Trhs[    0,    8] = -8.8817841970012523e-16
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -3.2043419447665922e-02
Tsol[    0,    1] =  3.4467436442667268e-02
Tsol[    0,    2] = -8.5009307475806817e-03
Tsol[    0,    3] =  6.0769137525793371e-03
Tsol[    0,    4] =  5.4324794480247025e-02
Tsol[    0,    5] =  3.2857435929513540e-02
Tsol[    0,    6] =  1.7717710171043587e-02
Tsol[    0,    7] =  5.6281609700731816e-03
Tsol[    0,    8] = -1.3124229943609844e-02
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-3.2043419447665922e-02
  SOL[ 0][ 0][    2]= 3.4467436442667268e-02
  SOL[ 0][ 0][    3]=-8.5009307475806817e-03
  SOL[ 0][ 0][    4]= 6.0769137525793371e-03

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 5.4324794480247025e-02
  SOL[ 0][ 1][    2]= 3.2857435929513540e-02

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]= 1.7717710171043587e-02

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 5.6281609700731816e-03
  SOL[ 0][ 3][    2]=-1.3124229943609844e-02
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-3.1489777207451191e-15
  resid[ 0][    2]= 8.7633689909751011e-15
  resid[ 0][    3]=-2.1877051765203243e-14
  resid[ 0][    4]= 2.5307426781365910e-14

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 3.5561831257524545e-17
  resid[ 1][    2]= 2.4286128663675299e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 1.7347234759768071e-18

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 4.8572257327350599e-17
  resid[ 3][    2]=-1.3877787807814457e-17

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  2.530743e-14
max-norm resid_s  3.556183e-17
max-norm resid_c  1.734723e-18
max-norm resid_d  4.857226e-17
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.97e-02 nrm_sol = 2.96e-01 nrm_resid = 2.53e-14
residual_ratio = 7.771680e-14

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-3.1489777207451191e-15
  RHS[ 0][ 0][    2]= 8.7633689909751011e-15
  RHS[ 0][ 0][    3]=-2.1877051765203243e-14
  RHS[ 0][ 0][    4]= 2.5307426781365910e-14

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 3.5561831257524545e-17
  RHS[ 0][ 1][    2]= 2.4286128663675299e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 1.7347234759768071e-18

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 4.8572257327350599e-17
  RHS[ 0][ 3][    2]=-1.3877787807814457e-17

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2520753270018342e-01  (0)
    Term: 0[    2,    1]=-2.8191643735521194e-04  (1)
    Term: 0[    3,    1]=-2.4781273611387000e-01  (2)
    Term: 0[    4,    1]=-1.4410901608037968e-03  (3)
    Term: 0[    2,    2]= 8.9501988165133259e-02  (4)
    Term: 0[    3,    2]=-1.0415428942485892e-02  (5)
    Term: 0[    4,    2]=-6.0568203252760224e-05  (6)
    Term: 0[    3,    3]= 5.0260734681363028e-01  (7)
    Term: 0[    4,    3]=-5.3241209737109441e-02  (8)
    Term: 0[    4,    4]= 2.9178817341042562e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 8.2588720364169893e-02
      Term: 1[    2]= 6.6607465956257128e+00
      Term: 1[    3]= 2.2442449168286549e-01
      Term: 1[    4]= 5.7136971786046464e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 7.4888251471589715e+00
    KKT[1][1][    2]= 1.7598127356056210e+01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1803717741464771e+01  (0)
  KKT[3][0][    1,    2]= 1.1891750367844269e+01  (1)
  KKT[3][0][    1,    3]= 3.4548333741645472e+01  (2)
  KKT[3][0][    1,    4]= 5.2057829831274105e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.252075327001834e-01
(1) KKT[2][1] =  -2.819164373552119e-04
(2) KKT[3][1] =  -2.478127361138700e-01
(3) KKT[4][1] =  -1.441090160803797e-03
(4) KKT[2][2] =   8.950198816513326e-02
(5) KKT[3][2] =  -1.041542894248589e-02
(6) KKT[4][2] =  -6.056820325276022e-05
(7) KKT[3][3] =   5.026073468136303e-01
(8) KKT[4][3] =  -5.324120973710944e-02
(9) KKT[4][4] =   2.917881734104256e-01
(10) KKT[1][1] =   8.258872036416989e-02
(11) KKT[2][2] =   6.660746595625713e+00
(12) KKT[3][3] =   2.244244916828655e-01
(13) KKT[4][4] =   5.713697178604646e+00
(14) KKT[5][5] =   7.488825147158972e+00
(15) KKT[6][6] =   1.759812735605621e+01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.180371774146477e+01
(22) KKT[8][2] =   1.189175036784427e+01
(23) KKT[8][3] =   3.454833374164547e+01
(24) KKT[8][4] =   5.205782983127411e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -3.1489777207451191e-15
Trhs[    0,    1] =  8.7633689909751011e-15
Trhs[    0,    2] = -2.1877051765203243e-14
Trhs[    0,    3] =  2.5307426781365910e-14
Trhs[    0,    4] =  3.5561831257524545e-17
Trhs[    0,    5] =  2.4286128663675299e-17
Trhs[    0,    6] =  1.7347234759768071e-18
Trhs[    0,    7] =  4.8572257327350599e-17
Trhs[    0,    8] = -1.3877787807814457e-17
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -2.8618560220452827e-15
Tsol[    0,    1] =  3.3997080824530313e-15
Tsol[    0,    2] = -1.2211992307547422e-15
Tsol[    0,    3] =  6.8508189382296977e-16
Tsol[    0,    4] =  7.2844941780515271e-17
Tsol[    0,    5] = -1.9473080056714291e-16
Tsol[    0,    6] = -9.3669367624494712e-16
Tsol[    0,    7] =  5.0996120059172939e-16
Tsol[    0,    8] = -3.4511835571910390e-15
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-2.8618560220452827e-15
  SOL[ 0][ 0][    2]= 3.3997080824530313e-15
  SOL[ 0][ 0][    3]=-1.2211992307547422e-15
  SOL[ 0][ 0][    4]= 6.8508189382296977e-16

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 7.2844941780515271e-17
  SOL[ 0][ 1][    2]=-1.9473080056714291e-16

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-9.3669367624494712e-16

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 5.0996120059172939e-16
  SOL[ 0][ 3][    2]=-3.4511835571910390e-15

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 1.5157899436577020e-17
  resid[ 0][    2]=-3.9234566116819192e-18
  resid[ 0][    3]=-5.6581800876587263e-18
  resid[ 0][    4]=-6.1169331318916553e-17

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-3.4694469519536142e-18

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.0408340855860843e-16
  resid[ 3][    2]=-1.3877787807814457e-17

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 6.9388939039072284e-18

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 1.6805133673525319e-18
  resid[ 6][    2]= 1.9515639104739080e-18

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  6.116933e-17
max-norm resid_s  0.000000e+00
max-norm resid_c  3.469447e-18
max-norm resid_d  1.040834e-16
max-norm resid_zL 6.938894e-18
max-norm resid_zU 0.000000e+00
max-norm resid_vL 1.951564e-18
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.97e-02 nrm_sol = 2.96e-01 nrm_resid = 1.04e-16
residual_ratio = 3.196306e-16
*** Step Calculated for Iteration: 4

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 3.2043419447663063e-02
  delta[ 0][    2]=-3.4467436442663868e-02
  delta[ 0][    3]= 8.5009307475794604e-03
  delta[ 0][    4]=-6.0769137525786519e-03

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-5.4324794480246956e-02
  delta[ 1][    2]=-3.2857435929513734e-02

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-1.7717710171044523e-02

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-5.6281609700726716e-03
  delta[ 3][    2]= 1.3124229943606394e-02

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-5.2041341128007255e-02
  delta[ 4][    2]=-1.4372642141797438e-02
  delta[ 4][    3]=-6.9486863838561341e-02
  delta[ 4][    4]=-2.9594458223918602e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 5.6279624743139035e-03
  delta[ 6][    2]=-1.3124428439365163e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 4:
**************************************************

--> Starting line search in iteration 4 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  2.9842353507915902e-02   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  3.9825445417251970e-05   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.9842353507915902e-02   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9945312615447051e+01   last_obj_val                =  2.9955742525783503e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  3.4829859585675562e-04 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 4
The current filter has 0 entries.
Relative step size for delta_x = 3.323022e-02
minimal step size ALPHA_MIN = 2.038711E-13
Starting checks for alpha (primal) = 9.93e-01
Checking acceptability for trial step size alpha_primal_test= 9.928710e-01:
  New values of barrier function     =  2.9900084025862331e+01  (reference  2.9947439563499405e+01):
  New values of constraint violation =  1.8956964213168170e-04  (reference  2.0173667050649158e-05):
reference_theta = 2.017367e-05 reference_gradBarrTDelta = -4.947652e-02
Checking Armijo Condition...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 2.017367e-05 reference_gradBarrTDelta = -4.947652e-02
Convergence Check:
  overall_error =  1.1527623040694213e-02   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  1.1527623040694213e-02   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  1.8145491853971407e-04   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.6652207192442508e-03   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 5
Acceptable Check:
  overall_error =  1.1527623040694213e-02   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  1.1527623040694213e-02   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  1.8145491853971407e-04   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.6652207192442508e-03   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9895751787428928e+01   last_obj_val                =  2.9945312615447051e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.6577883162303742e-03 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 5

**************************************************
*** Update HessianMatrix for Iteration 5:
**************************************************



**************************************************
*** Summary of Iteration: 5:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   5  2.9895752e+01 1.81e-04 1.15e-02  -3.8 5.43e-02    -  9.54e-01 9.93e-01f  1 

**************************************************
*** Beginning Iteration 5 from the following point:
**************************************************

Current barrier parameter mu = 1.5042412372345582e-04
Current fraction-to-the-boundary parameter tau = 9.9984957587627654e-01

||curr_x||_inf   = 6.3292803535819031e-01
||curr_s||_inf   = 2.1000007904723592e+01
||curr_y_c||_inf = 1.8379039893635380e+01
||curr_y_d||_inf = 5.8276599987012223e-01
||curr_z_L||_inf = 2.3428289735127442e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.8327862064003344e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 3.4467436442663868e-02
||delta_s||_inf   = 5.4324794480246956e-02
||delta_y_c||_inf = 1.7717710171044523e-02
||delta_y_d||_inf = 1.3124229943606394e-02
||delta_z_L||_inf = 2.9594458223918602e-01
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 1.3124428439365163e-02
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.3292803535819031e-01
curr_x[    2]= 3.0100908083491723e-03
curr_x[    3]= 3.1177153332875490e-01
curr_x[    4]= 5.2290340504705539e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1000007904723592e+01
curr_s[    2]= 5.0012324524558895e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8379039893635380e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.0957720187156121e-01
curr_y_d[    2]=-5.8276599987012223e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.3292804535819036e-01
curr_slack_x_L[    2]= 3.0101008083491722e-03
curr_slack_x_L[    3]= 3.1177154332875490e-01
curr_slack_x_L[    4]= 5.2290350504705541e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 7.4678295044483534e-06
curr_z_L[    2]= 2.3428289735127442e-01
curr_z_L[    3]= 1.7975022750407188e-03
curr_z_L[    4]= 5.0969647239301086e-02
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 8.1147235917455873e-06
curr_slack_s_L[    2]= 1.2325024558892395e-03
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.0935738614962913e-01
curr_v_L[    2]= 5.8327862064003344e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-2.0670352531831915e-03
curr_grad_lag_x[    2]=-5.1559855680585742e-04
curr_grad_lag_x[    3]=-2.9063595997216307e-03
curr_grad_lag_x[    4]=-1.1527623040694213e-02
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]= 2.1981572193208176e-04
curr_grad_lag_s[    2]=-5.1262076991120953e-04

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 3.2043419447663063e-02
  delta[ 0][    2]=-3.4467436442663868e-02
  delta[ 0][    3]= 8.5009307475794604e-03
  delta[ 0][    4]=-6.0769137525786519e-03

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-5.4324794480246956e-02
  delta[ 1][    2]=-3.2857435929513734e-02

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-1.7717710171044523e-02

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-5.6281609700726716e-03
  delta[ 3][    2]= 1.3124229943606394e-02

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-5.2041341128007255e-02
  delta[ 4][    2]=-1.4372642141797438e-02
  delta[ 4][    3]=-6.9486863838561341e-02
  delta[ 4][    4]=-2.9594458223918602e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 5.6279624743139035e-03
  delta[ 6][    2]=-1.3124428439365163e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 5:

                                   (scaled)                 (unscaled)
Objective...............:   2.9895751787428928e+01    2.9895751787428928e+01
Dual infeasibility......:   1.1527623040694213e-02    1.1527623040694213e-02
Constraint violation....:   1.8145491853971407e-04    1.8145491853971407e-04
Complementarity.........:   2.6652207192442508e-03    2.6652207192442508e-03
Overall NLP error.......:   1.1527623040694213e-02    1.1527623040694213e-02

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]=-2.2204460492503131e-16
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.0999818335081461e+01
curr_d[    2]= 5.0012324524558895e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-1.8956964213145966e-04
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1799137871942603e+01  (0)
jac_d[    1,    2]= 1.1899351785272968e+01  (1)
jac_d[    1,    3]= 3.4556040474072297e+01  (2)
jac_d[    1,    4]= 5.2063254948994434e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2305961857978347e-01  (0)
W[    2,    1]=-2.2336062622907020e-05  (1)
W[    3,    1]=-2.4961101138400885e-01  (2)
W[    4,    1]=-1.2661541401533223e-03  (3)
W[    2,    2]= 8.8201245092131841e-02  (4)
W[    3,    2]=-8.0553529514875973e-04  (5)
W[    4,    2]=-4.0860851584112924e-06  (6)
W[    3,    3]= 5.1440221112556239e-01  (7)
W[    4,    3]=-4.5663009914120992e-02  (8)
W[    4,    4]= 2.8758319842751195e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 5:
**************************************************

Optimality Error for Barrier Sub-problem = 1.152762e-02
Barrier Parameter: 1.504241e-04

**************************************************
*** Solving the Primal Dual System for Iteration 5:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-2.2972297815884190e-03
  RHS[ 0][ 0][    2]= 1.8379418202100237e-01
  RHS[ 0][ 0][    3]=-1.5913377112414839e-03
  RHS[ 0][ 0][    4]= 3.6565316668168389e-02

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]=-1.8127606721960777e+01
  RHS[ 0][ 1][    2]= 4.6071827400093096e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]=-2.2204460492503131e-16

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-1.8956964213145966e-04
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2305961857978347e-01  (0)
    Term: 0[    2,    1]=-2.2336062622907020e-05  (1)
    Term: 0[    3,    1]=-2.4961101138400885e-01  (2)
    Term: 0[    4,    1]=-1.2661541401533223e-03  (3)
    Term: 0[    2,    2]= 8.8201245092131841e-02  (4)
    Term: 0[    3,    2]=-8.0553529514875973e-04  (5)
    Term: 0[    4,    2]=-4.0860851584112924e-06  (6)
    Term: 0[    3,    3]= 5.1440221112556239e-01  (7)
    Term: 0[    4,    3]=-4.5663009914120992e-02  (8)
    Term: 0[    4,    4]= 2.8758319842751195e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.1798860169361140e-05
      Term: 1[    2]= 7.7832242927359644e+01
      Term: 1[    3]= 5.7654468905306722e-03
      Term: 1[    4]= 9.7474288749918392e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 5.0446251375220381e+04
    KKT[1][1][    2]= 4.7324743074787881e+02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1799137871942603e+01  (0)
  KKT[3][0][    1,    2]= 1.1899351785272968e+01  (1)
  KKT[3][0][    1,    3]= 3.4556040474072297e+01  (2)
  KKT[3][0][    1,    4]= 5.2063254948994434e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.230596185797835e-01
(1) KKT[2][1] =  -2.233606262290702e-05
(2) KKT[3][1] =  -2.496110113840088e-01
(3) KKT[4][1] =  -1.266154140153322e-03
(4) KKT[2][2] =   8.820124509213184e-02
(5) KKT[3][2] =  -8.055352951487597e-04
(6) KKT[4][2] =  -4.086085158411292e-06
(7) KKT[3][3] =   5.144022111255624e-01
(8) KKT[4][3] =  -4.566300991412099e-02
(9) KKT[4][4] =   2.875831984275120e-01
(10) KKT[1][1] =   1.179886016936114e-05
(11) KKT[2][2] =   7.783224292735964e+01
(12) KKT[3][3] =   5.765446890530672e-03
(13) KKT[4][4] =   9.747428874991839e-01
(14) KKT[5][5] =   5.044625137522038e+04
(15) KKT[6][6] =   4.732474307478788e+02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.179913787194260e+01
(22) KKT[8][2] =   1.189935178527297e+01
(23) KKT[8][3] =   3.455604047407230e+01
(24) KKT[8][4] =   5.206325494899443e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -2.2972297815884190e-03
Trhs[    0,    1] =  1.8379418202100237e-01
Trhs[    0,    2] = -1.5913377112414839e-03
Trhs[    0,    3] =  3.6565316668168389e-02
Trhs[    0,    4] = -1.8127606721960777e+01
Trhs[    0,    5] =  4.6071827400093096e-01
Trhs[    0,    6] = -2.2204460492503131e-16
Trhs[    0,    7] = -1.8956964213145966e-04
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -2.1255445952216229e-03
Tsol[    0,    1] =  2.4814919672612483e-03
Tsol[    0,    2] = -7.7307156770854441e-04
Tsol[    0,    3] =  4.1712419566869685e-04
Tsol[    0,    4] = -3.5932725767761655e-04
Tsol[    0,    5] =  9.6876950045772492e-04
Tsol[    0,    6] = -7.5948275300315969e-03
Tsol[    0,    7] =  8.9355518714384630e-04
Tsol[    0,    8] = -2.2505969224066447e-03
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-2.1255445952216229e-03
  SOL[ 0][ 0][    2]= 2.4814919672612483e-03
  SOL[ 0][ 0][    3]=-7.7307156770854441e-04
  SOL[ 0][ 0][    4]= 4.1712419566869685e-04

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]=-3.5932725767761655e-04
  SOL[ 0][ 1][    2]= 9.6876950045772492e-04

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-7.5948275300315969e-03

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 8.9355518714384630e-04
  SOL[ 0][ 3][    2]=-2.2505969224066447e-03
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.2438314267448902e-12
  resid[ 0][    2]= 2.5621722625490673e-12
  resid[ 0][    3]=-1.1089062394026294e-11
  resid[ 0][    4]=-2.2635919180724606e-11

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 4.9656459499836103e-17
  resid[ 1][    2]= 2.0383000842727483e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-1.6263032587282567e-19

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.8431436932253575e-18
  resid[ 3][    2]=-3.9031278209478160e-18

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 4.2351647362715017e-22

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  2.263592e-11
max-norm resid_s  4.965646e-17
max-norm resid_c  1.626303e-19
max-norm resid_d  3.903128e-18
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 4.235165e-22
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.15e-02 nrm_sol = 4.77e-02 nrm_resid = 2.26e-11
residual_ratio = 3.822733e-10

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-1.2438314267448902e-12
  RHS[ 0][ 0][    2]= 2.5621722625490673e-12
  RHS[ 0][ 0][    3]=-1.1089062394026294e-11
  RHS[ 0][ 0][    4]=-2.2635919180724606e-11

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.9656459499836103e-17
  RHS[ 0][ 1][    2]= 2.0726624071714549e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]=-1.6263032587282567e-19

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-1.8431436932253575e-18
  RHS[ 0][ 3][    2]=-3.9031278209478160e-18

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2305961857978347e-01  (0)
    Term: 0[    2,    1]=-2.2336062622907020e-05  (1)
    Term: 0[    3,    1]=-2.4961101138400885e-01  (2)
    Term: 0[    4,    1]=-1.2661541401533223e-03  (3)
    Term: 0[    2,    2]= 8.8201245092131841e-02  (4)
    Term: 0[    3,    2]=-8.0553529514875973e-04  (5)
    Term: 0[    4,    2]=-4.0860851584112924e-06  (6)
    Term: 0[    3,    3]= 5.1440221112556239e-01  (7)
    Term: 0[    4,    3]=-4.5663009914120992e-02  (8)
    Term: 0[    4,    4]= 2.8758319842751195e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.1798860169361140e-05
      Term: 1[    2]= 7.7832242927359644e+01
      Term: 1[    3]= 5.7654468905306722e-03
      Term: 1[    4]= 9.7474288749918392e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 5.0446251375220381e+04
    KKT[1][1][    2]= 4.7324743074787881e+02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1799137871942603e+01  (0)
  KKT[3][0][    1,    2]= 1.1899351785272968e+01  (1)
  KKT[3][0][    1,    3]= 3.4556040474072297e+01  (2)
  KKT[3][0][    1,    4]= 5.2063254948994434e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.230596185797835e-01
(1) KKT[2][1] =  -2.233606262290702e-05
(2) KKT[3][1] =  -2.496110113840088e-01
(3) KKT[4][1] =  -1.266154140153322e-03
(4) KKT[2][2] =   8.820124509213184e-02
(5) KKT[3][2] =  -8.055352951487597e-04
(6) KKT[4][2] =  -4.086085158411292e-06
(7) KKT[3][3] =   5.144022111255624e-01
(8) KKT[4][3] =  -4.566300991412099e-02
(9) KKT[4][4] =   2.875831984275120e-01
(10) KKT[1][1] =   1.179886016936114e-05
(11) KKT[2][2] =   7.783224292735964e+01
(12) KKT[3][3] =   5.765446890530672e-03
(13) KKT[4][4] =   9.747428874991839e-01
(14) KKT[5][5] =   5.044625137522038e+04
(15) KKT[6][6] =   4.732474307478788e+02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.179913787194260e+01
(22) KKT[8][2] =   1.189935178527297e+01
(23) KKT[8][3] =   3.455604047407230e+01
(24) KKT[8][4] =   5.206325494899443e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -1.2438314267448902e-12
Trhs[    0,    1] =  2.5621722625490673e-12
Trhs[    0,    2] = -1.1089062394026294e-11
Trhs[    0,    3] = -2.2635919180724606e-11
Trhs[    0,    4] =  4.9656459499836103e-17
Trhs[    0,    5] =  2.0726624071714549e-17
Trhs[    0,    6] = -1.6263032587282567e-19
Trhs[    0,    7] = -1.8431436932253575e-18
Trhs[    0,    8] = -3.9031278209478160e-18
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -3.3230233613782501e-14
Tsol[    0,    1] =  3.9336204759227877e-14
Tsol[    0,    2] = -1.3817486972155573e-14
Tsol[    0,    3] =  7.7113531963839977e-15
Tsol[    0,    4] = -1.0418049298259935e-17
Tsol[    0,    5] =  5.0776623216616920e-16
Tsol[    0,    6] =  4.4058206416384588e-12
Tsol[    0,    7] = -5.2560119019895885e-13
Tsol[    0,    8] =  2.4027833816909876e-13
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-3.3230233613782501e-14
  SOL[ 0][ 0][    2]= 3.9336204759227877e-14
  SOL[ 0][ 0][    3]=-1.3817486972155573e-14
  SOL[ 0][ 0][    4]= 7.7113531963839977e-15

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]=-1.0418049298259935e-17
  SOL[ 0][ 1][    2]= 5.0776623216616920e-16

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]= 4.4058206416384588e-12

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-5.2560119019895885e-13
  SOL[ 0][ 3][    2]= 2.4027833816909876e-13

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 4.3368086899420177e-19
  resid[ 0][    2]=-4.3368086899420177e-19
  resid[ 0][    3]=-2.6020852139652106e-18
  resid[ 0][    4]= 8.6736173798840355e-18

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 2.1684043449710089e-19

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 5.0957502106818708e-18
  resid[ 3][    2]=-7.5894152073985310e-19

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]=-2.3716922523120409e-20
  resid[ 4][    3]= 5.4210108624275222e-20
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-9.2131376626156222e-21
  resid[ 6][    2]=-3.5151867311053464e-20

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  8.673617e-18
max-norm resid_s  0.000000e+00
max-norm resid_c  2.168404e-19
max-norm resid_d  5.095750e-18
max-norm resid_zL 5.421011e-20
max-norm resid_zU 0.000000e+00
max-norm resid_vL 3.515187e-20
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.15e-02 nrm_sol = 4.77e-02 nrm_resid = 8.67e-18
residual_ratio = 1.464792e-16
*** Step Calculated for Iteration: 5

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 2.1255445951883925e-03
  delta[ 0][    2]=-2.4814919672219121e-03
  delta[ 0][    3]= 7.7307156769472691e-04
  delta[ 0][    4]=-4.1712419566098551e-04

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]= 3.5932725767760614e-04
  delta[ 1][    2]=-9.6876950045721719e-04

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 7.5948275344374172e-03

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-8.9355518766944745e-04
  delta[ 3][    2]= 2.2505969226469229e-03

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 2.3017095364300238e-04
  delta[ 4][    2]= 8.8303065415404527e-03
  delta[ 4][    3]=-1.3194774873050330e-03
  delta[ 4][    4]=-4.7686349361697002e-02

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 1.1133724138427665e-03
  delta[ 6][    2]=-2.7632161883168953e-03

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 5:
**************************************************

--> Starting line search in iteration 5 <--
Acceptable Check:
  overall_error =  1.1527623040694213e-02   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  1.1527623040694213e-02   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  1.8145491853971407e-04   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.6652207192442508e-03   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9895751787428928e+01   last_obj_val                =  2.9945312615447051e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.6577883162303742e-03 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 5
The current filter has 0 entries.
Relative step size for delta_x = 2.474045e-03
minimal step size ALPHA_MIN = 1.287858E-11
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  2.9899062868183606e+01  (reference  2.9900084025862331e+01):
  New values of constraint violation =  8.1739483115406131e-07  (reference  1.8956964213168170e-04):
reference_theta = 1.895696e-04 reference_gradBarrTDelta = -7.359879e-03
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 1.895696e-04 reference_gradBarrTDelta = -7.359879e-03
Convergence Check:
  overall_error =  1.7031525384496231e-04   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  9.7945439498812667e-07   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  2.2204460492503131e-16   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  1.7031525384496231e-04   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 6
Acceptable Check:
  overall_error =  1.7031525384496231e-04   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  9.7945439498812667e-07   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  2.2204460492503131e-16   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  1.7031525384496231e-04   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9894810258333443e+01   last_obj_val                =  2.9895751787428928e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  3.1494733947086321e-05 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 6

**************************************************
*** Update HessianMatrix for Iteration 6:
**************************************************



**************************************************
*** Summary of Iteration: 6:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   6  2.9894810e+01 2.22e-16 9.79e-07  -3.8 2.48e-03    -  1.00e+00 1.00e+00h  1 

**************************************************
*** Beginning Iteration 6 from the following point:
**************************************************

Current barrier parameter mu = 1.5042412372345582e-04
Current fraction-to-the-boundary parameter tau = 9.9984957587627654e-01

||curr_x||_inf   = 6.3505357995337874e-01
||curr_s||_inf   = 2.1000367231981269e+01
||curr_y_c||_inf = 1.8371445066100943e+01
||curr_y_d||_inf = 5.8051540294747528e-01
||curr_z_L||_inf = 2.4311320389281488e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.8051540445171657e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 2.4814919672219121e-03
||delta_s||_inf   = 9.6876950045721719e-04
||delta_y_c||_inf = 7.5948275344374172e-03
||delta_y_d||_inf = 2.2505969226469229e-03
||delta_z_L||_inf = 4.7686349361697002e-02
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 2.7632161883168953e-03
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.3505357995337874e-01
curr_x[    2]= 5.2859884112726021e-04
curr_x[    3]= 3.1254460489644964e-01
curr_x[    4]= 5.1873216309044554e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1000367231981269e+01
curr_s[    2]= 5.0002636829554321e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8371445066100943e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.1047075705923064e-01
curr_y_d[    2]=-5.8051540294747528e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.3505358995337879e-01
curr_slack_x_L[    2]= 5.2860884112726025e-04
curr_slack_x_L[    3]= 3.1254461489644964e-01
curr_slack_x_L[    4]= 5.1873226309044555e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 2.3763878314745073e-04
curr_z_L[    2]= 2.4311320389281488e-01
curr_z_L[    3]= 4.7802478773568578e-04
curr_z_L[    4]= 3.2832978776040841e-03
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 3.6744198126825722e-04
curr_slack_s_L[    2]= 2.6373295543180575e-04
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.1047075856347187e-01
curr_v_L[    2]= 5.8051540445171657e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-5.2847926842948707e-08
curr_grad_lag_x[    2]= 7.1983773497485970e-08
curr_grad_lag_x[    3]=-9.7945439498812667e-07
curr_grad_lag_x[    4]= 4.6278725719661740e-08
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-1.5042412315757758e-09
curr_grad_lag_s[    2]=-1.5042412870869271e-09

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 2.1255445951883925e-03
  delta[ 0][    2]=-2.4814919672219121e-03
  delta[ 0][    3]= 7.7307156769472691e-04
  delta[ 0][    4]=-4.1712419566098551e-04

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]= 3.5932725767760614e-04
  delta[ 1][    2]=-9.6876950045721719e-04

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 7.5948275344374172e-03

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-8.9355518766944745e-04
  delta[ 3][    2]= 2.2505969226469229e-03

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 2.3017095364300238e-04
  delta[ 4][    2]= 8.8303065415404527e-03
  delta[ 4][    3]=-1.3194774873050330e-03
  delta[ 4][    4]=-4.7686349361697002e-02

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 1.1133724138427665e-03
  delta[ 6][    2]=-2.7632161883168953e-03

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 6:

                                   (scaled)                 (unscaled)
Objective...............:   2.9894810258333443e+01    2.9894810258333443e+01
Dual infeasibility......:   9.7945439498812667e-07    9.7945439498812667e-07
Constraint violation....:   2.2204460492503131e-16    2.2204460492503131e-16
Complementarity.........:   1.7031525384496231e-04    1.7031525384496231e-04
Overall NLP error.......:   1.7031525384496231e-04    1.7031525384496231e-04

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 2.2204460492503131e-16
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.1000366414586438e+01
curr_d[    2]= 5.0002636829554321e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-8.1739483093201670e-07
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1798969446405131e+01  (0)
jac_d[    1,    2]= 1.1899886453572059e+01  (1)
jac_d[    1,    3]= 3.4556315332841002e+01  (2)
jac_d[    1,    4]= 5.2063639609842539e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2300676684148726e-01  (0)
W[    2,    1]=-3.9145300507455134e-06  (1)
W[    3,    1]=-2.4972711005946316e-01  (2)
W[    4,    1]=-1.2535298776635657e-03  (3)
W[    2,    2]= 8.8171754162195790e-02  (4)
W[    3,    2]=-1.4105130190738481e-04  (5)
W[    4,    2]=-7.0802093205719468e-07  (6)
W[    3,    3]= 5.1491269957174157e-01  (7)
W[    4,    3]=-4.5168134854547168e-02  (8)
W[    4,    4]= 2.8749163699092972e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 6:
**************************************************

Optimality Error for Barrier Sub-problem = 2.191233e-05
  sub_problem_error < kappa_eps * mu (1.504241e-03)
Updating mu=   1.5042412372345582e-04 and tau=   9.9984957587627654e-01 to new_mu=   1.8449144625279508e-06 and new_tau=   9.9999815508553747e-01
Barrier Parameter: 1.844914e-06

**************************************************
*** Solving the Primal Dual System for Iteration 6:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 2.3468082173803092e-04
  RHS[ 0][ 0][    2]= 2.3962314421545067e-01
  RHS[ 0][ 0][    3]= 4.7114246825067394e-04
  RHS[ 0][ 0][    4]= 3.2477783425799533e-03

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.0544978898862233e-01
  RHS[ 0][ 1][    2]= 5.7352001454543933e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 2.2204460492503131e-16

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-8.1739483093201670e-07
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2300676684148726e-01  (0)
    Term: 0[    2,    1]=-3.9145300507455134e-06  (1)
    Term: 0[    3,    1]=-2.4972711005946316e-01  (2)
    Term: 0[    4,    1]=-1.2535298776635657e-03  (3)
    Term: 0[    2,    2]= 8.8171754162195790e-02  (4)
    Term: 0[    3,    2]=-1.4105130190738481e-04  (5)
    Term: 0[    4,    2]=-7.0802093205719468e-07  (6)
    Term: 0[    3,    3]= 5.1491269957174157e-01  (7)
    Term: 0[    4,    3]=-4.5168134854547168e-02  (8)
    Term: 0[    4,    4]= 2.8749163699092972e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 3.7420272384397751e-04
      Term: 1[    2]= 4.5991134649654191e+02
      Term: 1[    3]= 1.5294609631782074e-03
      Term: 1[    4]= 6.3294653354376229e-02
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 1.1171035959111073e+03
    KKT[1][1][    2]= 2.2011485197261295e+03
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1798969446405131e+01  (0)
  KKT[3][0][    1,    2]= 1.1899886453572059e+01  (1)
  KKT[3][0][    1,    3]= 3.4556315332841002e+01  (2)
  KKT[3][0][    1,    4]= 5.2063639609842539e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.230067668414873e-01
(1) KKT[2][1] =  -3.914530050745513e-06
(2) KKT[3][1] =  -2.497271100594632e-01
(3) KKT[4][1] =  -1.253529877663566e-03
(4) KKT[2][2] =   8.817175416219579e-02
(5) KKT[3][2] =  -1.410513019073848e-04
(6) KKT[4][2] =  -7.080209320571947e-07
(7) KKT[3][3] =   5.149126995717416e-01
(8) KKT[4][3] =  -4.516813485454717e-02
(9) KKT[4][4] =   2.874916369909297e-01
(10) KKT[1][1] =   3.742027238439775e-04
(11) KKT[2][2] =   4.599113464965419e+02
(12) KKT[3][3] =   1.529460963178207e-03
(13) KKT[4][4] =   6.329465335437623e-02
(14) KKT[5][5] =   1.117103595911107e+03
(15) KKT[6][6] =   2.201148519726130e+03
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.179896944640513e+01
(22) KKT[8][2] =   1.189988645357206e+01
(23) KKT[8][3] =   3.455631533284100e+01
(24) KKT[8][4] =   5.206363960984254e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  2.3468082173803092e-04
Trhs[    0,    1] =  2.3962314421545067e-01
Trhs[    0,    2] =  4.7114246825067394e-04
Trhs[    0,    3] =  3.2477783425799533e-03
Trhs[    0,    4] =  4.0544978898862233e-01
Trhs[    0,    5] =  5.7352001454543933e-01
Trhs[    0,    6] =  2.2204460492503131e-16
Trhs[    0,    7] = -8.1739483093201670e-07
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -4.6173068622006925e-04
Tsol[    0,    1] =  5.2149040427637355e-04
Tsol[    0,    2] = -1.5512194474607771e-04
Tsol[    0,    3] =  9.5362226689995401e-05
Tsol[    0,    4] =  3.6300949825992341e-04
Tsol[    0,    5] =  2.6048299365706351e-04
Tsol[    0,    6] = -2.0213758047147895e-04
Tsol[    0,    7] =  6.9426867424948746e-05
Tsol[    0,    8] = -1.5825864336319051e-04
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-4.6173068622006925e-04
  SOL[ 0][ 0][    2]= 5.2149040427637355e-04
  SOL[ 0][ 0][    3]=-1.5512194474607771e-04
  SOL[ 0][ 0][    4]= 9.5362226689995401e-05

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 3.6300949825992341e-04
  SOL[ 0][ 1][    2]= 2.6048299365706351e-04

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-2.0213758047147895e-04

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 6.9426867424948746e-05
  SOL[ 0][ 3][    2]=-1.5825864336319051e-04
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-4.1293618574474119e-15
  resid[ 0][    2]= 1.7285745236760202e-14
  resid[ 0][    3]= 4.3157031699952823e-14
  resid[ 0][    4]= 7.2598541687179251e-14

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 2.7579392762600019e-17
  resid[ 1][    2]=-4.1172577500137031e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-5.4210108624275222e-20

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.3010426069826053e-18
  resid[ 3][    2]= 5.9631119486702744e-19

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  7.259854e-14
max-norm resid_s  4.117258e-17
max-norm resid_c  5.421011e-20
max-norm resid_d  1.301043e-18
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.68e-04 nrm_sol = 3.24e-03 nrm_resid = 7.26e-14
residual_ratio = 2.128886e-11

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-4.1293618574474119e-15
  RHS[ 0][ 0][    2]= 1.7285745236760202e-14
  RHS[ 0][ 0][    3]= 4.3157031699952823e-14
  RHS[ 0][ 0][    4]= 7.2598541687179251e-14

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 2.7579392762600019e-17
  RHS[ 0][ 1][    2]=-4.1172577500137031e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]=-5.4210108624275222e-20

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-1.3010426069826053e-18
  RHS[ 0][ 3][    2]= 5.9631119486702744e-19

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2300676684148726e-01  (0)
    Term: 0[    2,    1]=-3.9145300507455134e-06  (1)
    Term: 0[    3,    1]=-2.4972711005946316e-01  (2)
    Term: 0[    4,    1]=-1.2535298776635657e-03  (3)
    Term: 0[    2,    2]= 8.8171754162195790e-02  (4)
    Term: 0[    3,    2]=-1.4105130190738481e-04  (5)
    Term: 0[    4,    2]=-7.0802093205719468e-07  (6)
    Term: 0[    3,    3]= 5.1491269957174157e-01  (7)
    Term: 0[    4,    3]=-4.5168134854547168e-02  (8)
    Term: 0[    4,    4]= 2.8749163699092972e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 3.7420272384397751e-04
      Term: 1[    2]= 4.5991134649654191e+02
      Term: 1[    3]= 1.5294609631782074e-03
      Term: 1[    4]= 6.3294653354376229e-02
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 1.1171035959111073e+03
    KKT[1][1][    2]= 2.2011485197261295e+03
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1798969446405131e+01  (0)
  KKT[3][0][    1,    2]= 1.1899886453572059e+01  (1)
  KKT[3][0][    1,    3]= 3.4556315332841002e+01  (2)
  KKT[3][0][    1,    4]= 5.2063639609842539e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.230067668414873e-01
(1) KKT[2][1] =  -3.914530050745513e-06
(2) KKT[3][1] =  -2.497271100594632e-01
(3) KKT[4][1] =  -1.253529877663566e-03
(4) KKT[2][2] =   8.817175416219579e-02
(5) KKT[3][2] =  -1.410513019073848e-04
(6) KKT[4][2] =  -7.080209320571947e-07
(7) KKT[3][3] =   5.149126995717416e-01
(8) KKT[4][3] =  -4.516813485454717e-02
(9) KKT[4][4] =   2.874916369909297e-01
(10) KKT[1][1] =   3.742027238439775e-04
(11) KKT[2][2] =   4.599113464965419e+02
(12) KKT[3][3] =   1.529460963178207e-03
(13) KKT[4][4] =   6.329465335437623e-02
(14) KKT[5][5] =   1.117103595911107e+03
(15) KKT[6][6] =   2.201148519726130e+03
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.179896944640513e+01
(22) KKT[8][2] =   1.189988645357206e+01
(23) KKT[8][3] =   3.455631533284100e+01
(24) KKT[8][4] =   5.206363960984254e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -4.1293618574474119e-15
Trhs[    0,    1] =  1.7285745236760202e-14
Trhs[    0,    2] =  4.3157031699952823e-14
Trhs[    0,    3] =  7.2598541687179251e-14
Trhs[    0,    4] =  2.7579392762600019e-17
Trhs[    0,    5] = -4.1172577500137031e-17
Trhs[    0,    6] = -5.4210108624275222e-20
Trhs[    0,    7] = -1.3010426069826053e-18
Trhs[    0,    8] =  5.9631119486702744e-19
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -3.6531729862507271e-17
Tsol[    0,    1] =  4.3129064106996297e-17
Tsol[    0,    2] = -1.5110709545402567e-17
Tsol[    0,    3] =  8.4591651922961676e-18
Tsol[    0,    4] =  1.7397278749499479e-18
Tsol[    0,    5] =  1.7150791658041799e-19
Tsol[    0,    6] = -2.7696970037805652e-14
Tsol[    0,    7] =  1.9158768722507760e-15
Tsol[    0,    8] =  4.1868697420243664e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-3.6531729862507271e-17
  SOL[ 0][ 0][    2]= 4.3129064106996297e-17
  SOL[ 0][ 0][    3]=-1.5110709545402567e-17
  SOL[ 0][ 0][    4]= 8.4591651922961676e-18

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 1.7397278749499479e-18
  SOL[ 0][ 1][    2]= 1.7150791658041799e-19

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-2.7696970037805652e-14

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 1.9158768722507760e-15
  SOL[ 0][ 3][    2]= 4.1868697420243664e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 6.6061952440935002e-20
  resid[ 0][    2]=-6.9469936564653476e-20
  resid[ 0][    3]=-6.9456701674852628e-20
  resid[ 0][    4]= 3.6421754987444872e-19

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-2.7105054312137611e-20

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.3010426069826053e-18
  resid[ 3][    2]=-3.2526065174565133e-19

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]=-2.7105054312137611e-20
  resid[ 4][    2]=-4.4204531934833799e-21
  resid[ 4][    3]= 2.7105054312137611e-20
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-1.7728134888236489e-20
  resid[ 6][    2]= 1.8244295590469578e-20

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.642175e-19
max-norm resid_s  0.000000e+00
max-norm resid_c  2.710505e-20
max-norm resid_d  1.301043e-18
max-norm resid_zL 2.710505e-20
max-norm resid_zU 0.000000e+00
max-norm resid_vL 1.824430e-20
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.68e-04 nrm_sol = 3.24e-03 nrm_resid = 1.30e-18
residual_ratio = 3.815188e-16
*** Step Calculated for Iteration: 6

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 4.6173068622003271e-04
  delta[ 0][    2]=-5.2149040427633040e-04
  delta[ 0][    3]= 1.5512194474606261e-04
  delta[ 0][    4]=-9.5362226689986945e-05

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-3.6300949825992168e-04
  delta[ 1][    2]=-2.6048299365706335e-04

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 2.0213758044378198e-04

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-6.9426867423032866e-05
  delta[ 3][    2]= 1.5825864336360920e-04

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-2.3490643209619506e-04
  delta[ 4][    2]= 2.1628180252509198e-04
  delta[ 4][    3]=-4.7235915715553890e-04
  delta[ 4][    4]=-3.2416961263236452e-03

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 6.9425381630945914e-05
  delta[ 6][    2]=-1.5826012915575165e-04

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 6:
**************************************************

--> Starting line search in iteration 6 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  1.7031525384496231e-04   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  9.7945439498812667e-07   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  2.2204460492503131e-16   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  1.7031525384496231e-04   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9894810258333443e+01   last_obj_val                =  2.9895751787428928e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  3.1494733947086321e-05 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 6
The current filter has 0 entries.
Relative step size for delta_x = 5.212149e-04
minimal step size ALPHA_MIN = 9.700214E-13
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  2.9894459830341511e+01  (reference  2.9894862415535506e+01):
  New values of constraint violation =  3.7627721383159951e-08  (reference  8.1739483115406131e-07):
reference_theta = 8.173948e-07 reference_gradBarrTDelta = -4.213283e-04
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 8.173948e-07 reference_gradBarrTDelta = -4.213283e-04
Convergence Check:
  overall_error =  2.1540498233864880e-06   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  3.6266241913631564e-08   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.1540498233864880e-06   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 7
Acceptable Check:
  overall_error =  2.1540498233864880e-06   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  3.6266241913631564e-08   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.1540498233864880e-06   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9894383464029904e+01   last_obj_val                =  2.9894810258333443e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.4276738774457737e-05 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 7

**************************************************
*** Update HessianMatrix for Iteration 7:
**************************************************



**************************************************
*** Summary of Iteration: 7:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   7  2.9894383e+01 0.00e+00 3.63e-08  -5.7 5.21e-04    -  1.00e+00 1.00e+00h  1 A

**************************************************
*** Beginning Iteration 7 from the following point:
**************************************************

Current barrier parameter mu = 1.8449144625279508e-06
Current fraction-to-the-boundary parameter tau = 9.9999815508553747e-01

||curr_x||_inf   = 6.3551531063959876e-01
||curr_s||_inf   = 2.1000004222483010e+01
||curr_y_c||_inf = 1.8371242928520498e+01
||curr_y_d||_inf = 5.8035714430411167e-01
||curr_z_L||_inf = 2.4332948569533996e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.8035714432256080e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 5.2149040427633040e-04
||delta_s||_inf   = 3.6300949825992168e-04
||delta_y_c||_inf = 2.0213758044378198e-04
||delta_y_d||_inf = 1.5825864336360920e-04
||delta_z_L||_inf = 3.2416961263236452e-03
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 1.5826012915575165e-04
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.3551531063959876e-01
curr_x[    2]= 7.1084368509298067e-06
curr_x[    3]= 3.1269972684119568e-01
curr_x[    4]= 5.1777854082354566e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1000004222483010e+01
curr_s[    2]= 5.0000031999617747e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8371242928520498e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.1054018392665365e-01
curr_y_d[    2]=-5.8035714430411167e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.3551532063959881e-01
curr_slack_x_L[    2]= 7.1184368509298067e-06
curr_slack_x_L[    3]= 3.1269973684119567e-01
curr_slack_x_L[    4]= 5.1777864082354567e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 2.7323510512556649e-06
curr_z_L[    2]= 2.4332948569533996e-01
curr_z_L[    3]= 5.6656305801468763e-06
curr_z_L[    4]= 4.1601751280438953e-05
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 4.4324830099640167e-06
curr_slack_s_L[    2]= 3.2499617743653175e-06
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.1054018394510283e-01
curr_v_L[    2]= 5.8035714432256080e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-7.4502058478910244e-09
curr_grad_lag_x[    2]= 1.5505805639470793e-08
curr_grad_lag_x[    3]=-3.6266241913631564e-08
curr_grad_lag_x[    4]= 1.1558658797889559e-08
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-1.8449186622859770e-11
curr_grad_lag_s[    2]=-1.8449131111708539e-11

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 4.6173068622003271e-04
  delta[ 0][    2]=-5.2149040427633040e-04
  delta[ 0][    3]= 1.5512194474606261e-04
  delta[ 0][    4]=-9.5362226689986945e-05

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-3.6300949825992168e-04
  delta[ 1][    2]=-2.6048299365706335e-04

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 2.0213758044378198e-04

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-6.9426867423032866e-05
  delta[ 3][    2]= 1.5825864336360920e-04

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-2.3490643209619506e-04
  delta[ 4][    2]= 2.1628180252509198e-04
  delta[ 4][    3]=-4.7235915715553890e-04
  delta[ 4][    4]=-3.2416961263236452e-03

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 6.9425381630945914e-05
  delta[ 6][    2]=-1.5826012915575165e-04

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 7:

                                   (scaled)                 (unscaled)
Objective...............:   2.9894383464029904e+01    2.9894383464029904e+01
Dual infeasibility......:   3.6266241913631564e-08    3.6266241913631564e-08
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   2.1540498233864880e-06    2.1540498233864880e-06
Overall NLP error.......:   2.1540498233864880e-06    2.1540498233864880e-06

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.1000004184855289e+01
curr_d[    2]= 5.0000031999617747e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-3.7627721383159951e-08
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1798925182789434e+01  (0)
jac_d[    1,    2]= 1.1899998473835513e+01  (1)
jac_d[    1,    3]= 3.4556391056896160e+01  (2)
jac_d[    1,    4]= 5.2063724837208390e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2296220471794007e-01  (0)
W[    2,    1]=-5.2608573728596901e-08  (1)
W[    3,    1]=-2.4969519213810942e-01  (2)
W[    4,    1]=-1.2504448837915186e-03  (3)
W[    2,    2]= 8.8142001240504808e-02  (4)
W[    3,    2]=-1.8951947361231929e-06  (5)
W[    4,    2]=-9.4909178718310217e-09  (6)
W[    3,    3]= 5.1492700270553149e-01  (7)
W[    4,    3]=-4.5046584493996081e-02  (8)
W[    4,    4]= 2.8739567907856894e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 7:
**************************************************

Optimality Error for Barrier Sub-problem = 3.091354e-07
  sub_problem_error < kappa_eps * mu (1.844914e-05)
Updating mu=   1.8449144625279508e-06 and tau=   9.9999815508553747e-01 to new_mu=   2.5059035596800618e-09 and new_tau=   9.9999999749409640e-01
Barrier Parameter: 2.505904e-09

**************************************************
*** Solving the Primal Dual System for Iteration 7:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 2.7209577655906626e-06
  RHS[ 0][ 0][    2]= 2.4297747116815116e-01
  RHS[ 0][ 0][    3]= 5.6213505939652126e-06
  RHS[ 0][ 0][    4]= 4.1564912765916002e-05

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.0997483408686047e-01
  RHS[ 0][ 1][    2]= 5.7958608798604538e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-3.7627721383159951e-08
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2296220471794007e-01  (0)
    Term: 0[    2,    1]=-5.2608573728596901e-08  (1)
    Term: 0[    3,    1]=-2.4969519213810942e-01  (2)
    Term: 0[    4,    1]=-1.2504448837915186e-03  (3)
    Term: 0[    2,    2]= 8.8142001240504808e-02  (4)
    Term: 0[    3,    2]=-1.8951947361231929e-06  (5)
    Term: 0[    4,    2]=-9.4909178718310217e-09  (6)
    Term: 0[    3,    3]= 5.1492700270553149e-01  (7)
    Term: 0[    4,    3]=-4.5046584493996081e-02  (8)
    Term: 0[    4,    4]= 2.8739567907856894e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 4.2994259343830725e-06
      Term: 1[    2]= 3.4182994215022976e+04
      Term: 1[    3]= 1.8118437314273029e-05
      Term: 1[    4]= 8.0346596016919237e-04
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 9.2620813891948943e+04
    KKT[1][1][    2]= 1.7857352935663323e+05
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1798925182789434e+01  (0)
  KKT[3][0][    1,    2]= 1.1899998473835513e+01  (1)
  KKT[3][0][    1,    3]= 3.4556391056896160e+01  (2)
  KKT[3][0][    1,    4]= 5.2063724837208390e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.229622047179401e-01
(1) KKT[2][1] =  -5.260857372859690e-08
(2) KKT[3][1] =  -2.496951921381094e-01
(3) KKT[4][1] =  -1.250444883791519e-03
(4) KKT[2][2] =   8.814200124050481e-02
(5) KKT[3][2] =  -1.895194736123193e-06
(6) KKT[4][2] =  -9.490917871831022e-09
(7) KKT[3][3] =   5.149270027055315e-01
(8) KKT[4][3] =  -4.504658449399608e-02
(9) KKT[4][4] =   2.873956790785689e-01
(10) KKT[1][1] =   4.299425934383072e-06
(11) KKT[2][2] =   3.418299421502298e+04
(12) KKT[3][3] =   1.811843731427303e-05
(13) KKT[4][4] =   8.034659601691924e-04
(14) KKT[5][5] =   9.262081389194894e+04
(15) KKT[6][6] =   1.785735293566332e+05
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.179892518278943e+01
(22) KKT[8][2] =   1.189999847383551e+01
(23) KKT[8][3] =   3.455639105689616e+01
(24) KKT[8][4] =   5.206372483720839e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  2.7209577655906626e-06
Trhs[    0,    1] =  2.4297747116815116e-01
Trhs[    0,    2] =  5.6213505939652126e-06
Trhs[    0,    3] =  4.1564912765916002e-05
Trhs[    0,    4] =  4.0997483408686047e-01
Trhs[    0,    5] =  5.7958608798604538e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -3.7627721383159951e-08
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -6.2652408419959489e-06
Tsol[    0,    1] =  7.1082302230646972e-06
Tsol[    0,    2] = -2.1484200753445985e-06
Tsol[    0,    3] =  1.3054306942758500e-06
Tsol[    0,    4] =  4.4263887633871708e-06
Tsol[    0,    5] =  3.2456323788051813e-06
Tsol[    0,    6] = -2.8767390142458308e-06
Tsol[    0,    7] =  8.9578023670933149e-07
Tsol[    0,    8] = -2.0591086390686630e-06
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-6.2652408419959489e-06
  SOL[ 0][ 0][    2]= 7.1082302230646972e-06
  SOL[ 0][ 0][    3]=-2.1484200753445985e-06
  SOL[ 0][ 0][    4]= 1.3054306942758500e-06

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 4.4263887633871708e-06
  SOL[ 0][ 1][    2]= 3.2456323788051813e-06

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-2.8767390142458308e-06

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 8.9578023670933149e-07
  SOL[ 0][ 3][    2]=-2.0591086390686630e-06
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-7.9386849418596565e-17
  resid[ 0][    2]= 3.6293596156285663e-15
  resid[ 0][    3]= 7.3211876179643281e-14
  resid[ 0][    4]= 1.5036136322900679e-14

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]=-7.2953888955828820e-17
  resid[ 1][    2]= 8.5520258003056807e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-2.1175823681357508e-22

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.8634724839594607e-20
  resid[ 3][    2]= 6.7762635780344027e-21

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  7.321188e-14
max-norm resid_s  8.552026e-17
max-norm resid_c  2.117582e-22
max-norm resid_d  1.863472e-20
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.15e-06 nrm_sol = 4.16e-05 nrm_resid = 7.32e-14
residual_ratio = 1.675181e-09

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-7.9386849418596565e-17
  RHS[ 0][ 0][    2]= 3.6293596156285663e-15
  RHS[ 0][ 0][    3]= 7.3211876179643281e-14
  RHS[ 0][ 0][    4]= 1.5036136322900679e-14

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]=-7.2953888955828820e-17
  RHS[ 0][ 1][    2]= 8.5520258003056807e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]=-2.1175823681357508e-22

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-1.8634724839594607e-20
  RHS[ 0][ 3][    2]= 6.7762635780344027e-21

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2296220471794007e-01  (0)
    Term: 0[    2,    1]=-5.2608573728596901e-08  (1)
    Term: 0[    3,    1]=-2.4969519213810942e-01  (2)
    Term: 0[    4,    1]=-1.2504448837915186e-03  (3)
    Term: 0[    2,    2]= 8.8142001240504808e-02  (4)
    Term: 0[    3,    2]=-1.8951947361231929e-06  (5)
    Term: 0[    4,    2]=-9.4909178718310217e-09  (6)
    Term: 0[    3,    3]= 5.1492700270553149e-01  (7)
    Term: 0[    4,    3]=-4.5046584493996081e-02  (8)
    Term: 0[    4,    4]= 2.8739567907856894e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 4.2994259343830725e-06
      Term: 1[    2]= 3.4182994215022976e+04
      Term: 1[    3]= 1.8118437314273029e-05
      Term: 1[    4]= 8.0346596016919237e-04
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 9.2620813891948943e+04
    KKT[1][1][    2]= 1.7857352935663323e+05
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    1,    1]= 1.1798925182789434e+01  (0)
  KKT[3][0][    1,    2]= 1.1899998473835513e+01  (1)
  KKT[3][0][    1,    3]= 3.4556391056896160e+01  (2)
  KKT[3][0][    1,    4]= 5.2063724837208390e+01  (3)
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (4)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (5)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (6)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.229622047179401e-01
(1) KKT[2][1] =  -5.260857372859690e-08
(2) KKT[3][1] =  -2.496951921381094e-01
(3) KKT[4][1] =  -1.250444883791519e-03
(4) KKT[2][2] =   8.814200124050481e-02
(5) KKT[3][2] =  -1.895194736123193e-06
(6) KKT[4][2] =  -9.490917871831022e-09
(7) KKT[3][3] =   5.149270027055315e-01
(8) KKT[4][3] =  -4.504658449399608e-02
(9) KKT[4][4] =   2.873956790785689e-01
(10) KKT[1][1] =   4.299425934383072e-06
(11) KKT[2][2] =   3.418299421502298e+04
(12) KKT[3][3] =   1.811843731427303e-05
(13) KKT[4][4] =   8.034659601691924e-04
(14) KKT[5][5] =   9.262081389194894e+04
(15) KKT[6][6] =   1.785735293566332e+05
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[8][1] =   1.179892518278943e+01
(22) KKT[8][2] =   1.189999847383551e+01
(23) KKT[8][3] =   3.455639105689616e+01
(24) KKT[8][4] =   5.206372483720839e+01
(25) KKT[9][1] =   2.300000000000000e+00
(26) KKT[9][2] =   5.600000000000000e+00
(27) KKT[9][3] =   1.110000000000000e+01
(28) KKT[9][4] =   1.300000000000000e+00
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -7.9386849418596565e-17
Trhs[    0,    1] =  3.6293596156285663e-15
Trhs[    0,    2] =  7.3211876179643281e-14
Trhs[    0,    3] =  1.5036136322900679e-14
Trhs[    0,    4] = -7.2953888955828820e-17
Trhs[    0,    5] =  8.5520258003056807e-17
Trhs[    0,    6] = -2.1175823681357508e-22
Trhs[    0,    7] = -1.8634724839594607e-20
Trhs[    0,    8] =  6.7762635780344027e-21
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  4.7112194922704051e-19
Tsol[    0,    1] = -5.6056129123484051e-19
Tsol[    0,    2] =  2.0260594432390074e-19
Tsol[    0,    3] = -1.1337836054961630e-19
Tsol[    0,    4] =  5.1193219129188954e-21
Tsol[    0,    5] =  3.9195102017660203e-20
Tsol[    0,    6] = -2.2436181292286647e-14
Tsol[    0,    7] =  5.4710965110526591e-16
Tsol[    0,    8] =  6.9136874427838209e-15
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 4.7112194922704051e-19
  SOL[ 0][ 0][    2]=-5.6056129123484051e-19
  SOL[ 0][ 0][    3]= 2.0260594432390074e-19
  SOL[ 0][ 0][    4]=-1.1337836054961630e-19

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 5.1193219129188954e-21
  SOL[ 0][ 1][    2]= 3.9195102017660203e-20

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-2.2436181292286647e-14

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 5.4710965110526591e-16
  SOL[ 0][ 3][    2]= 6.9136874427838209e-15

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.2275360290286931e-21
  resid[ 0][    2]=-1.2275360290286931e-21
  resid[ 0][    3]=-3.7719435932418062e-22
  resid[ 0][    4]=-6.3097337125544951e-21

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 4.2351647362715017e-22

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 0.0000000000000000e+00
  resid[ 3][    2]= 0.0000000000000000e+00

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]=-2.8783300377431135e-23
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-1.5894954016802662e-23
  resid[ 6][    2]=-1.2273211559398853e-22

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  6.309734e-21
max-norm resid_s  0.000000e+00
max-norm resid_c  4.235165e-22
max-norm resid_d  0.000000e+00
max-norm resid_zL 2.878330e-23
max-norm resid_zU 0.000000e+00
max-norm resid_vL 1.227321e-22
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.15e-06 nrm_sol = 4.16e-05 nrm_resid = 6.31e-21
residual_ratio = 1.443748e-16
*** Step Calculated for Iteration: 7

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 6.2652408419964199e-06
  delta[ 0][    2]=-7.1082302230652580e-06
  delta[ 0][    3]= 2.1484200753448010e-06
  delta[ 0][    4]=-1.3054306942759633e-06

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.4263887633871657e-06
  delta[ 1][    2]=-3.2456323788051419e-06

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 2.8767389918096496e-06

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-8.9578023616222179e-07
  delta[ 3][    2]= 2.0591086459823505e-06

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-2.7284348833184789e-06
  delta[ 4][    2]= 3.1369317707575831e-06
  delta[ 4][    3]=-5.6576557368342686e-06
  delta[ 4][    4]=-4.1552305212932867e-05

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 8.9576181203463457e-07
  delta[ 6][    2]=-2.0591270700544266e-06

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 7:
**************************************************

--> Starting line search in iteration 7 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  2.1540498233864880e-06   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  3.6266241913631564e-08   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.1540498233864880e-06   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9894383464029904e+01   last_obj_val                =  2.9894810258333443e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.4276738774457737e-05 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 7
Storing current iterate as backup acceptable point.
The current filter has 0 entries.
Relative step size for delta_x = 7.108180e-06
minimal step size ALPHA_MIN = 3.479185E-12
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  2.9894378202211509e+01  (reference  2.9894383567756453e+01):
  New values of constraint violation =  6.9430017290983415e-12  (reference  3.7627721383159951e-08):
reference_theta = 3.762772e-08 reference_gradBarrTDelta = -5.407549e-06
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 3.762772e-08 reference_gradBarrTDelta = -5.407549e-06
Convergence Check:
  overall_error =  2.5601472143227895e-09   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  6.7104923836286564e-12   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  1.1102230246251565e-16   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.5601472143227895e-09   compl_inf_tol_   =  1.0000000000000000e-04


**************************************************
*** Summary of Iteration: 8:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   8  2.9894378e+01 1.11e-16 6.71e-12  -8.6 7.11e-06    -  1.00e+00 1.00e+00h  1 

**************************************************
*** Beginning Iteration 8 from the following point:
**************************************************

Current barrier parameter mu = 2.5059035596800618e-09
Current fraction-to-the-boundary parameter tau = 9.9999999749409640e-01

||curr_x||_inf   = 6.3552157588044078e-01
||curr_s||_inf   = 2.0999999796094247e+01
||curr_y_c||_inf = 1.8371240051781506e+01
||curr_y_d||_inf = 5.8035508519546564e-01
||curr_z_L||_inf = 2.4333262262711072e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.8035508519549073e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 7.1082302230652580e-06
||delta_s||_inf   = 4.4263887633871657e-06
||delta_y_c||_inf = 2.8767389918096496e-06
||delta_y_d||_inf = 2.0591086459823505e-06
||delta_z_L||_inf = 4.1552305212932867e-05
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 2.0591270700544266e-06
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.3552157588044078e-01
curr_x[    2]= 2.0662786454876144e-10
curr_x[    3]= 3.1270187526127102e-01
curr_x[    4]= 5.1776548651660287e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.0999999796094247e+01
curr_s[    2]= 4.9999999543293958e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8371240051781506e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.1054107970688980e-01
curr_y_d[    2]=-5.8035508519546564e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.3552158588044083e-01
curr_slack_x_L[    2]= 1.0206627864548762e-08
curr_slack_x_L[    3]= 3.1270188526127102e-01
curr_slack_x_L[    4]= 5.1776558651660289e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 3.9161679371860160e-09
curr_z_L[    2]= 2.4333262262711072e-01
curr_z_L[    3]= 7.9748433126077562e-09
curr_z_L[    4]= 4.9446067506085493e-08
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 6.0942468849134457e-09
curr_slack_s_L[    2]= 4.3293955087619906e-09
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.1054107970691489e-01
curr_v_L[    2]= 5.8035508519549073e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-1.3972073789560082e-12
curr_grad_lag_x[    2]= 2.9990732119955510e-12
curr_grad_lag_x[    3]=-6.7104923836286564e-12
curr_grad_lag_x[    4]= 2.2428291794845782e-12
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-2.5091040356528538e-14
curr_grad_lag_s[    2]=-2.5091040356528538e-14

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 6.2652408419964199e-06
  delta[ 0][    2]=-7.1082302230652580e-06
  delta[ 0][    3]= 2.1484200753448010e-06
  delta[ 0][    4]=-1.3054306942759633e-06

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.4263887633871657e-06
  delta[ 1][    2]=-3.2456323788051419e-06

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 2.8767389918096496e-06

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-8.9578023616222179e-07
  delta[ 3][    2]= 2.0591086459823505e-06

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-2.7284348833184789e-06
  delta[ 4][    2]= 3.1369317707575831e-06
  delta[ 4][    3]=-5.6576557368342686e-06
  delta[ 4][    4]=-4.1552305212932867e-05

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 8.9576181203463457e-07
  delta[ 6][    2]=-2.0591270700544266e-06

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 8:

                                   (scaled)                 (unscaled)
Objective...............:   2.9894378048973930e+01    2.9894378048973930e+01
Dual infeasibility......:   6.7104923836286564e-12    6.7104923836286564e-12
Constraint violation....:   1.1102230246251565e-16    1.1102230246251565e-16
Complementarity.........:   2.5601472143227895e-09    2.5601472143227895e-09
Overall NLP error.......:   2.5601472143227895e-09    2.5601472143227895e-09

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]=-1.1102230246251565e-16
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.0999999796087305e+01
curr_d[    2]= 4.9999999543293967e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-6.9420025283761788e-12
curr_d - curr_s[    2]= 8.8817841970012523e-16

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    1,    1]= 1.1798924608988067e+01  (0)
jac_d[    1,    2]= 1.1899999999955638e+01  (1)
jac_d[    1,    3]= 3.4556392029537029e+01  (2)
jac_d[    1,    4]= 5.2063726005876163e+01  (3)
jac_d[    2,    1]= 2.2999999999999998e+00  (4)
jac_d[    2,    2]= 5.5999999999999996e+00  (5)
jac_d[    2,    3]= 1.1100000000000000e+01  (6)
jac_d[    2,    4]= 1.3000000000000000e+00  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2296220471794007e-01  (0)
W[    2,    1]=-5.2608573728596901e-08  (1)
W[    3,    1]=-2.4969519213810942e-01  (2)
W[    4,    1]=-1.2504448837915186e-03  (3)
W[    2,    2]= 8.8142001240504808e-02  (4)
W[    3,    2]=-1.8951947361231929e-06  (5)
W[    4,    2]=-9.4909178718310217e-09  (6)
W[    3,    3]= 5.1492700270553149e-01  (7)
W[    4,    3]=-4.5046584493996081e-02  (8)
W[    4,    4]= 2.8739567907856894e-01  (9)



Number of Iterations....: 8

                                   (scaled)                 (unscaled)
Objective...............:   2.9894378048973930e+01    2.9894378048973930e+01
Dual infeasibility......:   6.7104923836286564e-12    6.7104923836286564e-12
Constraint violation....:   1.1102230246251565e-16    1.1102230246251565e-16
Complementarity.........:   2.5601472143227895e-09    2.5601472143227895e-09
Overall NLP error.......:   2.5601472143227895e-09    2.5601472143227895e-09

DenseVector "x" with 4 elements:
x[    1]= 6.3552157588044078e-01
x[    2]= 2.0662786454876144e-10
x[    3]= 3.1270187526127102e-01
x[    4]= 5.1776548651660287e-02
DenseVector "y_c" with 1 elements:
y_c[    1]=-1.8371240051781506e+01
DenseVector "y_d" with 2 elements:
y_d[    1]=-4.1054107970688980e-01
y_d[    2]=-5.8035508519546564e-01
DenseVector "z_L" with 4 elements:
z_L[    1]= 3.9161679371860160e-09
z_L[    2]= 2.4333262262711072e-01
z_L[    3]= 7.9748433126077562e-09
z_L[    4]= 4.9446067506085493e-08
DenseVector "z_U" with 0 elements:
DenseVector "v_L" with 2 elements:
v_L[    1]= 4.1054107970691489e-01
v_L[    2]= 5.8035508519549073e-01
DenseVector "v_U" with 0 elements:

Number of objective function evaluations             = 9
Number of objective gradient evaluations             = 9
Number of equality constraint evaluations            = 9
Number of inequality constraint evaluations          = 9
Number of equality constraint Jacobian evaluations   = 9
Number of inequality constraint Jacobian evaluations = 9
Number of Lagrangian Hessian evaluations             = 8
Total CPU secs in IPOPT (w/o function evaluations)   =      0.013
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Optimal Solution Found.
DenseVector "final x unscaled" with 4 elements:
final x unscaled[    1]= 6.3552157588044078e-01
final x unscaled[    2]= 2.0662786454876144e-10
final x unscaled[    3]= 3.1270187526127102e-01
final x unscaled[    4]= 5.1776548651660287e-02
DenseVector "final y_c unscaled" with 1 elements:
final y_c unscaled[    1]=-1.8371240051781506e+01
DenseVector "final y_d unscaled" with 2 elements:
final y_d unscaled[    1]=-4.1054107970688980e-01
final y_d unscaled[    2]=-5.8035508519546564e-01
DenseVector "final z_L unscaled" with 4 elements:
final z_L unscaled[    1]= 3.9161679371860160e-09
final z_L unscaled[    2]= 2.4333262262711072e-01
final z_L unscaled[    3]= 7.9748433126077562e-09
final z_L unscaled[    4]= 4.9446067506085493e-08
DenseVector "final z_U unscaled" with 0 elements: