List of options: Name Value # times used acceptable_tol = 2.5e-06 1 bound_relax_factor = 1e-08 2 check_derivatives_for_naninf = yes 1 derivative_test = none 1 hessian_approximation = exact 7 limited_memory_max_history = 6 0 ma97_order = auto 3 ma97_scaling = dynamic 3 ma97_u = 1e-08 3 max_cpu_time = 60 1 max_iter = 26 1 nag_monitoring_file = 3 1 nag_monitoring_level = 5 1 nag_print_file = 2 1 nag_print_level = 2 1 nlp_lower_bound_inf = -1e+20 1 nlp_scaling_method = gradient-based 1 nlp_upper_bound_inf = 1e+20 1 obj_scaling_factor = 1 1 print_timing_statistics = no 1 tol = 2.5e-08 3 ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** This version is built and supported by Numerical Algorithms Group (NAG) Ltd. For support email support@nag.co.uk ****************************************************************************** This is Ipopt version 3.12.4, running with linear solver ma97. Number of nonzeros in equality constraint Jacobian...: 4 Number of nonzeros in inequality constraint Jacobian.: 8 Number of nonzeros in Lagrangian Hessian.............: 10 Scaling parameter for objective function = 1.000000e+00 objective scaling factor = 1 No x scaling provided No c scaling provided No d scaling provided DenseVector "original x_L unscaled" with 4 elements: original x_L unscaled[ 1]= 0.0000000000000000e+00 original x_L unscaled[ 2]= 0.0000000000000000e+00 original x_L unscaled[ 3]= 0.0000000000000000e+00 original x_L unscaled[ 4]= 0.0000000000000000e+00 DenseVector "original x_U unscaled" with 0 elements: DenseVector "original d_L unscaled" with 2 elements: original d_L unscaled[ 1]= 2.1000000000000000e+01 original d_L unscaled[ 2]= 5.0000000000000000e+00 DenseVector "original d_U unscaled" with 0 elements: DenseVector "modified x_L scaled" with 4 elements: modified x_L scaled[ 1]=-1.0000000000000000e-08 modified x_L scaled[ 2]=-1.0000000000000000e-08 modified x_L scaled[ 3]=-1.0000000000000000e-08 modified x_L scaled[ 4]=-1.0000000000000000e-08 DenseVector "modified x_U scaled" with 0 elements: DenseVector "modified d_L scaled" with 2 elements: modified d_L scaled[ 1]= 2.0999999790000000e+01 modified d_L scaled[ 2]= 4.9999999500000003e+00 DenseVector "modified d_U scaled" with 0 elements: DenseVector "initial x unscaled" with 4 elements: initial x unscaled[ 1]= 1.0000000000000000e+00 initial x unscaled[ 2]= 1.0000000000000000e+00 initial x unscaled[ 3]= 1.0000000000000000e+00 initial x unscaled[ 4]= 1.0000000000000000e+00 Initial values of x sufficiently inside the bounds. Initial values of s sufficiently inside the bounds. CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-2.3550000000000001e+01 RHS[ 0][ 0][ 2]=-2.5750000000000000e+01 RHS[ 0][ 0][ 3]=-3.8000000000000000e+01 RHS[ 0][ 0][ 4]=-3.9500000000000000e+01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 1.0000000000000000e+00 RHS[ 0][ 1][ 2]= 1.0000000000000000e+00 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: Homogeneous vector, all elements have value 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: Homogeneous vector, all elements have value 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 0.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Uninitialized! Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1900871710465619e+01 (0) KKT[3][0][ 1, 2]= 1.1832734374958813e+01 (1) KKT[3][0][ 1, 3]= 3.4542393087661402e+01 (2) KKT[3][0][ 1, 4]= 5.1880501644602440e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 0.000000000000000e+00 (1) KKT[2][1] = 0.000000000000000e+00 (2) KKT[3][1] = 0.000000000000000e+00 (3) KKT[4][1] = 0.000000000000000e+00 (4) KKT[2][2] = 0.000000000000000e+00 (5) KKT[3][2] = 0.000000000000000e+00 (6) KKT[4][2] = 0.000000000000000e+00 (7) KKT[3][3] = 0.000000000000000e+00 (8) KKT[4][3] = 0.000000000000000e+00 (9) KKT[4][4] = 0.000000000000000e+00 (10) KKT[1][1] = 1.000000000000000e+00 (11) KKT[2][2] = 1.000000000000000e+00 (12) KKT[3][3] = 1.000000000000000e+00 (13) KKT[4][4] = 1.000000000000000e+00 (14) KKT[5][5] = 1.000000000000000e+00 (15) KKT[6][6] = 1.000000000000000e+00 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.190087171046562e+01 (22) KKT[8][2] = 1.183273437495881e+01 (23) KKT[8][3] = 3.454239308766140e+01 (24) KKT[8][4] = 5.188050164460244e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 HSL_MA97: Make heuristic choice of AMD or MeTiS HSL_MA97: Used AMD HSL_MA97: PREDICTED nfactor 45.000000, maxfront 9 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -2.3550000000000001e+01 Trhs[ 0, 1] = -2.5750000000000000e+01 Trhs[ 0, 2] = -3.8000000000000000e+01 Trhs[ 0, 3] = -3.9500000000000000e+01 Trhs[ 0, 4] = 1.0000000000000000e+00 Trhs[ 0, 5] = 1.0000000000000000e+00 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = 0.0000000000000000e+00 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 1.1433520952693961e-01 Tsol[ 0, 1] = -1.7537673840920132e-01 Tsol[ 0, 2] = 1.0739304065987820e-01 Tsol[ 0, 3] = -4.6351511777616747e-02 Tsol[ 0, 4] = 5.9037524177086054e-01 Tsol[ 0, 5] = 4.1266703283417938e-01 Tsol[ 0, 6] = -1.7438577687930067e+01 Tsol[ 0, 7] = -4.0962475822913946e-01 Tsol[ 0, 8] = -5.8733296716582062e-01 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 1.1433520952693961e-01 SOL[ 0][ 0][ 2]=-1.7537673840920132e-01 SOL[ 0][ 0][ 3]= 1.0739304065987820e-01 SOL[ 0][ 0][ 4]=-4.6351511777616747e-02 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 5.9037524177086054e-01 SOL[ 0][ 1][ 2]= 4.1266703283417938e-01 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.7438577687930067e+01 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-4.0962475822913946e-01 SOL[ 0][ 3][ 2]=-5.8733296716582062e-01 Least square estimates max(y_c) = 1.743858e+01, max(y_d) = 5.873330e-01 Total number of variables............................: 4 variables with only lower bounds: 4 variables with lower and upper bounds: 0 variables with only upper bounds: 0 Total number of equality constraints.................: 1 Total number of inequality constraints...............: 2 inequality constraints with only lower bounds: 2 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 Convergence Check: overall_error = 8.9156501027688250e+01 IpData().tol() = 2.4999999999999999e-08 dual_inf = 5.9037524177086054e-01 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 3.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 8.9156501027688250e+01 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 0 Acceptable Check: overall_error = 8.9156501027688250e+01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 5.9037524177086054e-01 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 3.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 8.9156501027688250e+01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 1.3080000000000001e+02 last_obj_val = -1.0000000000000001e+50 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 7.6452599388379204e+47 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 0 ************************************************** *** Update HessianMatrix for Iteration 0: ************************************************** ************************************************** *** Summary of Iteration: 0: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 1.3080000e+02 3.00e+00 5.90e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 y ************************************************** *** Beginning Iteration 0 from the following point: ************************************************** Current barrier parameter mu = 1.0000000000000001e-01 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 1.0000000000000000e+00 ||curr_s||_inf = 1.1015650081768825e+02 ||curr_y_c||_inf = 1.7438577687930067e+01 ||curr_y_d||_inf = 5.8733296716582062e-01 ||curr_z_L||_inf = 1.0000000000000000e+00 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 1.0000000000000000e+00 ||curr_v_U||_inf = 0.0000000000000000e+00 No search direction has been computed yet. DenseVector "curr_x" with 4 elements: curr_x[ 1]= 1.0000000000000000e+00 curr_x[ 2]= 1.0000000000000000e+00 curr_x[ 3]= 1.0000000000000000e+00 curr_x[ 4]= 1.0000000000000000e+00 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 1.1015650081768825e+02 curr_s[ 2]= 2.0300000000000001e+01 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.7438577687930067e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.0962475822913946e-01 curr_y_d[ 2]=-5.8733296716582062e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 1.0000000099999999e+00 curr_slack_x_L[ 2]= 1.0000000099999999e+00 curr_slack_x_L[ 3]= 1.0000000099999999e+00 curr_slack_x_L[ 4]= 1.0000000099999999e+00 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 DenseVector "curr_z_U" with 0 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 8.9156501027688250e+01 curr_slack_s_L[ 2]= 1.5300000050000001e+01 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 DenseVector "curr_v_U" with 0 elements: Homogeneous vector, all elements have value 1.0000000000000000e+00 DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-1.1433520952693854e-01 curr_grad_lag_x[ 2]= 1.7537673840920576e-01 curr_grad_lag_x[ 3]=-1.0739304065987199e-01 curr_grad_lag_x[ 4]= 4.6351511777615428e-02 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-5.9037524177086054e-01 curr_grad_lag_s[ 2]=-4.1266703283417938e-01 ***Current NLP Values for Iteration 0: (scaled) (unscaled) Objective...............: 1.3080000000000001e+02 1.3080000000000001e+02 Dual infeasibility......: 5.9037524177086054e-01 5.9037524177086054e-01 Constraint violation....: 3.0000000000000000e+00 3.0000000000000000e+00 Complementarity.........: 8.9156501027688250e+01 8.9156501027688250e+01 Overall NLP error.......: 8.9156501027688250e+01 8.9156501027688250e+01 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 3.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 1.1015650081768825e+02 curr_d[ 2]= 2.0300000000000001e+01 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]= 0.0000000000000000e+00 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1900871710465619e+01 (0) jac_d[ 1, 2]= 1.1832734374958813e+01 (1) jac_d[ 1, 3]= 3.4542393087661402e+01 (2) jac_d[ 1, 4]= 5.1880501644602440e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 4.0078791515727900e-02 (0) W[ 2, 1]=-3.5734258038424687e-04 (1) W[ 3, 1]=-3.8555383673037166e-02 (2) W[ 4, 1]=-1.1660652623064897e-03 (3) W[ 2, 2]= 2.7311182929367437e-02 (4) W[ 3, 2]=-2.6162581778132361e-02 (5) W[ 4, 2]=-7.9125857085083240e-04 (6) W[ 3, 3]= 1.5009060072718036e-01 (7) W[ 4, 3]=-8.5372635276010855e-02 (8) W[ 4, 4]= 8.7329959109168187e-02 (9) ************************************************** *** Update Barrier Parameter for Iteration 0: ************************************************** Optimality Error for Barrier Sub-problem = 8.905650e+01 Barrier Parameter: 1.000000e-01 ************************************************** *** Solving the Primal Dual System for Iteration 0: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 7.8566579147306148e-01 RHS[ 0][ 0][ 2]= 1.0753777394092057e+00 RHS[ 0][ 0][ 3]= 7.9260796034012804e-01 RHS[ 0][ 0][ 4]= 9.4635251277761545e-01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.0850413502895422e-01 RHS[ 0][ 1][ 2]= 5.8079801947476173e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 3.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 0.0000000000000000e+00 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 4.0078791515727900e-02 (0) Term: 0[ 2, 1]=-3.5734258038424687e-04 (1) Term: 0[ 3, 1]=-3.8555383673037166e-02 (2) Term: 0[ 4, 1]=-1.1660652623064897e-03 (3) Term: 0[ 2, 2]= 2.7311182929367437e-02 (4) Term: 0[ 3, 2]=-2.6162581778132361e-02 (5) Term: 0[ 4, 2]=-7.9125857085083240e-04 (6) Term: 0[ 3, 3]= 1.5009060072718036e-01 (7) Term: 0[ 4, 3]=-8.5372635276010855e-02 (8) Term: 0[ 4, 4]= 8.7329959109168187e-02 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 9.9999999000000017e-01 Term: 1[ 2]= 9.9999999000000017e-01 Term: 1[ 3]= 9.9999999000000017e-01 Term: 1[ 4]= 9.9999999000000017e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 1.1216232001853035e-02 KKT[1][1][ 2]= 6.5359476910589936e-02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1900871710465619e+01 (0) KKT[3][0][ 1, 2]= 1.1832734374958813e+01 (1) KKT[3][0][ 1, 3]= 3.4542393087661402e+01 (2) KKT[3][0][ 1, 4]= 5.1880501644602440e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 4.007879151572790e-02 (1) KKT[2][1] = -3.573425803842469e-04 (2) KKT[3][1] = -3.855538367303717e-02 (3) KKT[4][1] = -1.166065262306490e-03 (4) KKT[2][2] = 2.731118292936744e-02 (5) KKT[3][2] = -2.616258177813236e-02 (6) KKT[4][2] = -7.912585708508324e-04 (7) KKT[3][3] = 1.500906007271804e-01 (8) KKT[4][3] = -8.537263527601086e-02 (9) KKT[4][4] = 8.732995910916819e-02 (10) KKT[1][1] = 9.999999900000002e-01 (11) KKT[2][2] = 9.999999900000002e-01 (12) KKT[3][3] = 9.999999900000002e-01 (13) KKT[4][4] = 9.999999900000002e-01 (14) KKT[5][5] = 1.121623200185303e-02 (15) KKT[6][6] = 6.535947691058994e-02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.190087171046562e+01 (22) KKT[8][2] = 1.183273437495881e+01 (23) KKT[8][3] = 3.454239308766140e+01 (24) KKT[8][4] = 5.188050164460244e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 7.8566579147306148e-01 Trhs[ 0, 1] = 1.0753777394092057e+00 Trhs[ 0, 2] = 7.9260796034012804e-01 Trhs[ 0, 3] = 9.4635251277761545e-01 Trhs[ 0, 4] = 4.0850413502895422e-01 Trhs[ 0, 5] = 5.8079801947476173e-01 Trhs[ 0, 6] = 3.0000000000000000e+00 Trhs[ 0, 7] = 0.0000000000000000e+00 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 1.4834722739123620e+00 Tsol[ 0, 1] = 1.4602809304393991e+00 Tsol[ 0, 2] = -1.2402495971439942e-01 Tsol[ 0, 3] = 1.8027175536263826e-01 Tsol[ 0, 4] = 4.0002199770001418e+01 Tsol[ 0, 5] = 1.0447235669600664e+01 Tsol[ 0, 6] = -1.4740319268725783e+00 Tsol[ 0, 7] = 4.0169818175853800e-02 Tsol[ 0, 8] = 1.0202783905199447e-01 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 1.4834722739123620e+00 SOL[ 0][ 0][ 2]= 1.4602809304393991e+00 SOL[ 0][ 0][ 3]=-1.2402495971439942e-01 SOL[ 0][ 0][ 4]= 1.8027175536263826e-01 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 4.0002199770001418e+01 SOL[ 0][ 1][ 2]= 1.0447235669600664e+01 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.4740319268725783e+00 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 4.0169818175853800e-02 SOL[ 0][ 3][ 2]= 1.0202783905199447e-01 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.4155343563970746e-15 resid[ 0][ 2]=-9.7144514654701197e-16 resid[ 0][ 3]=-9.7144514654701197e-16 resid[ 0][ 4]=-3.6359804056473877e-15 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 1.1102230246251565e-16 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 7.1054273576010019e-15 resid[ 3][ 2]=-1.7763568394002505e-15 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 7.1054273576010019e-15 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.635980e-15 max-norm resid_s 1.110223e-16 max-norm resid_c 0.000000e+00 max-norm resid_d 7.105427e-15 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 7.105427e-15 max-norm resid_vU 0.000000e+00 nrm_rhs = 8.91e+01 nrm_sol = 4.00e+01 nrm_resid = 7.11e-15 residual_ratio = 5.505578e-17 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-1.4155343563970746e-15 RHS[ 0][ 0][ 2]=-9.7144514654701197e-16 RHS[ 0][ 0][ 3]=-9.7144514654701197e-16 RHS[ 0][ 0][ 4]=-3.6359804056473877e-15 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 7.9696121715166404e-17 RHS[ 0][ 1][ 2]= 1.1102230246251565e-16 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 7.1054273576010019e-15 RHS[ 0][ 3][ 2]=-1.7763568394002505e-15 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 4.0078791515727900e-02 (0) Term: 0[ 2, 1]=-3.5734258038424687e-04 (1) Term: 0[ 3, 1]=-3.8555383673037166e-02 (2) Term: 0[ 4, 1]=-1.1660652623064897e-03 (3) Term: 0[ 2, 2]= 2.7311182929367437e-02 (4) Term: 0[ 3, 2]=-2.6162581778132361e-02 (5) Term: 0[ 4, 2]=-7.9125857085083240e-04 (6) Term: 0[ 3, 3]= 1.5009060072718036e-01 (7) Term: 0[ 4, 3]=-8.5372635276010855e-02 (8) Term: 0[ 4, 4]= 8.7329959109168187e-02 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 9.9999999000000017e-01 Term: 1[ 2]= 9.9999999000000017e-01 Term: 1[ 3]= 9.9999999000000017e-01 Term: 1[ 4]= 9.9999999000000017e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 1.1216232001853035e-02 KKT[1][1][ 2]= 6.5359476910589936e-02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1900871710465619e+01 (0) KKT[3][0][ 1, 2]= 1.1832734374958813e+01 (1) KKT[3][0][ 1, 3]= 3.4542393087661402e+01 (2) KKT[3][0][ 1, 4]= 5.1880501644602440e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 4.007879151572790e-02 (1) KKT[2][1] = -3.573425803842469e-04 (2) KKT[3][1] = -3.855538367303717e-02 (3) KKT[4][1] = -1.166065262306490e-03 (4) KKT[2][2] = 2.731118292936744e-02 (5) KKT[3][2] = -2.616258177813236e-02 (6) KKT[4][2] = -7.912585708508324e-04 (7) KKT[3][3] = 1.500906007271804e-01 (8) KKT[4][3] = -8.537263527601086e-02 (9) KKT[4][4] = 8.732995910916819e-02 (10) KKT[1][1] = 9.999999900000002e-01 (11) KKT[2][2] = 9.999999900000002e-01 (12) KKT[3][3] = 9.999999900000002e-01 (13) KKT[4][4] = 9.999999900000002e-01 (14) KKT[5][5] = 1.121623200185303e-02 (15) KKT[6][6] = 6.535947691058994e-02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.190087171046562e+01 (22) KKT[8][2] = 1.183273437495881e+01 (23) KKT[8][3] = 3.454239308766140e+01 (24) KKT[8][4] = 5.188050164460244e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -1.4155343563970746e-15 Trhs[ 0, 1] = -9.7144514654701197e-16 Trhs[ 0, 2] = -9.7144514654701197e-16 Trhs[ 0, 3] = -3.6359804056473877e-15 Trhs[ 0, 4] = 7.9696121715166404e-17 Trhs[ 0, 5] = 1.1102230246251565e-16 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = 7.1054273576010019e-15 Trhs[ 0, 8] = -1.7763568394002505e-15 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -1.7126872825619164e-16 Tsol[ 0, 1] = -1.8756119840691598e-16 Tsol[ 0, 2] = 3.0516971182305158e-16 Tsol[ 0, 3] = 5.3660214840056076e-17 Tsol[ 0, 4] = 1.9621746481089269e-15 Tsol[ 0, 5] = 3.7892381338602249e-15 Tsol[ 0, 6] = -8.5337615563311272e-16 Tsol[ 0, 7] = -5.7687915633822337e-17 Tsol[ 0, 8] = 1.3664031985624862e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-1.7126872825619164e-16 SOL[ 0][ 0][ 2]=-1.8756119840691598e-16 SOL[ 0][ 0][ 3]= 3.0516971182305158e-16 SOL[ 0][ 0][ 4]= 5.3660214840056076e-17 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 1.9621746481089269e-15 SOL[ 0][ 1][ 2]= 3.7892381338602249e-15 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-8.5337615563311272e-16 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-5.7687915633822337e-17 SOL[ 0][ 3][ 2]= 1.3664031985624862e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 1.3877787807814457e-16 resid[ 0][ 2]= 2.7755575615628914e-17 resid[ 0][ 3]=-8.3266726846886741e-17 resid[ 0][ 4]=-3.0531133177191805e-16 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-4.4408920985006262e-16 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-7.1054273576010019e-15 resid[ 3][ 2]= 1.7763568394002505e-15 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]=-2.2204460492503131e-16 resid[ 4][ 4]=-1.1102230246251565e-16 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-7.1054273576010019e-15 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.053113e-16 max-norm resid_s 0.000000e+00 max-norm resid_c 4.440892e-16 max-norm resid_d 7.105427e-15 max-norm resid_zL 2.220446e-16 max-norm resid_zU 0.000000e+00 max-norm resid_vL 7.105427e-15 max-norm resid_vU 0.000000e+00 nrm_rhs = 8.91e+01 nrm_sol = 4.00e+01 nrm_resid = 7.11e-15 residual_ratio = 5.505578e-17 *** Step Calculated for Iteration: 0 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]=-1.4834722739123622e+00 delta[ 0][ 2]=-1.4602809304393993e+00 delta[ 0][ 3]= 1.2402495971439972e-01 delta[ 0][ 4]=-1.8027175536263820e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.0002199770001418e+01 delta[ 1][ 2]=-1.0447235669600660e+01 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 1.4740319268725774e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-4.0169818175853855e-02 delta[ 3][ 2]=-1.0202783905199433e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 5.8347225807763969e-01 delta[ 4][ 2]= 5.6028091483659026e-01 delta[ 4][ 3]=-1.0240249594741500e+00 delta[ 4][ 4]=-7.1972824744007924e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-5.5020442359500665e-01 delta[ 6][ 2]=-3.1063819378218505e-01 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 0: ************************************************** --> Starting line search in iteration 0 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 8.9156501027688250e+01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 5.9037524177086054e-01 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 3.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 8.9156501027688250e+01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 1.3080000000000001e+02 last_obj_val = -1.0000000000000001e+50 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 7.6452599388379204e+47 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 0 The current filter has 0 entries. Relative step size for delta_x = 7.417361e-01 minimal step size ALPHA_MIN = 1.934668E-11 Starting checks for alpha (primal) = 6.67e-01 trial_max is initialized to 3.000000e+04 trial_min is initialized to 3.000000e-04 Checking acceptability for trial step size alpha_primal_test= 6.673532e-01: New values of barrier function = 7.8989662078651492e+01 (reference 1.3007828384293424e+02): New values of constraint violation = 1.0884783964214879e+00 (reference 3.0000000000000000e+00): reference_theta = 3.000000e+00 reference_gradBarrTDelta = -7.753270e+01 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 3.000000e+00 reference_gradBarrTDelta = -7.753270e+01 Convergence Check: overall_error = 2.9236515515232938e+01 IpData().tol() = 2.4999999999999999e-08 dual_inf = 2.3566895846196956e-01 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 9.9794031750440659e-01 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.9236515515232938e+01 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 1 Acceptable Check: overall_error = 2.9236515515232938e+01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 2.3566895846196956e-01 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 9.9794031750440659e-01 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.9236515515232938e+01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 7.8782624220870048e+01 last_obj_val = 1.3080000000000001e+02 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 6.6026457348383438e-01 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 1 ************************************************** *** Update HessianMatrix for Iteration 1: ************************************************** ************************************************** *** Summary of Iteration: 1: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 1 7.8782624e+01 9.98e-01 2.36e-01 -1.0 4.00e+01 - 9.67e-01 6.67e-01f 1 ************************************************** *** Beginning Iteration 1 from the following point: ************************************************** Current barrier parameter mu = 1.0000000000000001e-01 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 1.0827684571557799e+00 ||curr_s||_inf = 8.3460903694136817e+01 ||curr_y_c||_inf = 1.6454877724095773e+01 ||curr_y_d||_inf = 6.5542157485186969e-01 ||curr_z_L||_inf = 1.5640854064665453e+00 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 6.9968328506144539e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 1.4834722739123622e+00 ||delta_s||_inf = 4.0002199770001418e+01 ||delta_y_c||_inf = 1.4740319268725774e+00 ||delta_y_d||_inf = 1.0202783905199433e-01 ||delta_z_L||_inf = 1.0240249594741500e+00 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 5.5020442359500665e-01 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 9.9999901000000779e-03 curr_x[ 2]= 2.5476808016708929e-02 curr_x[ 3]= 1.0827684571557799e+00 curr_x[ 4]= 8.7969506223191773e-01 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 8.3460903694136817e+01 curr_s[ 2]= 1.3328003557454222e+01 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.6454877724095773e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.3643221603682469e-01 curr_y_d[ 2]=-6.5542157485186969e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 1.0000000100000078e-02 curr_slack_x_L[ 2]= 2.5476818016708931e-02 curr_slack_x_L[ 3]= 1.0827684671557798e+00 curr_slack_x_L[ 4]= 8.7969507223191779e-01 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 1.5640854064665453e+00 curr_z_L[ 2]= 1.5416646347888423e+00 curr_z_L[ 3]= 1.0000000000000009e-02 curr_z_L[ 4]= 3.0418593963610785e-01 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 6.2460903904136813e+01 curr_slack_s_L[ 2]= 8.3280036074542210e+00 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.6807704800597016e-01 curr_v_L[ 2]= 6.9968328506144539e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-2.1321333754836314e-01 curr_grad_lag_x[ 2]=-1.0974464897260949e-01 curr_grad_lag_x[ 3]= 2.3566895846196956e-01 curr_grad_lag_x[ 4]= 2.2985598118471817e-01 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-3.1644831969145470e-02 curr_grad_lag_s[ 2]=-4.4261710209575700e-02 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]=-1.4834722739123622e+00 delta[ 0][ 2]=-1.4602809304393993e+00 delta[ 0][ 3]= 1.2402495971439972e-01 delta[ 0][ 4]=-1.8027175536263820e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.0002199770001418e+01 delta[ 1][ 2]=-1.0447235669600660e+01 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 1.4740319268725774e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-4.0169818175853855e-02 delta[ 3][ 2]=-1.0202783905199433e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 5.8347225807763969e-01 delta[ 4][ 2]= 5.6028091483659026e-01 delta[ 4][ 3]=-1.0240249594741500e+00 delta[ 4][ 4]=-7.1972824744007924e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-5.5020442359500665e-01 delta[ 6][ 2]=-3.1063819378218505e-01 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 1: (scaled) (unscaled) Objective...............: 7.8782624220870048e+01 7.8782624220870048e+01 Dual infeasibility......: 2.3566895846196956e-01 2.3566895846196956e-01 Constraint violation....: 9.9794031750440659e-01 9.9794031750440659e-01 Complementarity.........: 2.9236515515232938e+01 2.9236515515232938e+01 Overall NLP error.......: 2.9236515515232938e+01 2.9236515515232938e+01 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 9.9794031750440659e-01 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 8.3370365615219740e+01 curr_d[ 2]= 1.3328003557454219e+01 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-9.0538078917077769e-02 curr_d - curr_s[ 2]=-3.5527136788005009e-15 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1999069712087620e+01 (0) jac_d[ 1, 2]= 1.1898391732106615e+01 (1) jac_d[ 1, 3]= 3.4425217214759435e+01 (2) jac_d[ 1, 4]= 5.1918789390799873e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 4.0600755335508484e-02 (0) W[ 2, 1]=-8.0171598605041427e-08 (1) W[ 3, 1]=-3.6763037283151076e-04 (2) W[ 4, 1]=-9.0332862351682204e-06 (3) W[ 2, 2]= 2.7550405418060590e-02 (4) W[ 3, 2]=-6.3555391550212481e-04 (5) W[ 4, 2]=-1.5616610761493973e-05 (6) W[ 3, 3]= 5.8198412238091107e-02 (7) W[ 4, 3]=-7.1610651858095689e-02 (8) W[ 4, 4]= 8.8142183071655555e-02 (9) ************************************************** *** Update Barrier Parameter for Iteration 1: ************************************************** Optimality Error for Barrier Sub-problem = 2.913652e+01 Barrier Parameter: 1.000000e-01 ************************************************** *** Solving the Primal Dual System for Iteration 1: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-8.6491268310817411e+00 RHS[ 0][ 0][ 2]=-2.4932159733760479e+00 RHS[ 0][ 0][ 3]= 1.5331411043595494e-01 RHS[ 0][ 0][ 4]= 4.2036716753249048e-01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.3483221455030319e-01 RHS[ 0][ 1][ 2]= 6.4341489513490957e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 9.9794031750440659e-01 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-9.0538078917077769e-02 RHS[ 0][ 3][ 2]=-3.5527136788005009e-15 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 4.0600755335508484e-02 (0) Term: 0[ 2, 1]=-8.0171598605041427e-08 (1) Term: 0[ 3, 1]=-3.6763037283151076e-04 (2) Term: 0[ 4, 1]=-9.0332862351682204e-06 (3) Term: 0[ 2, 2]= 2.7550405418060590e-02 (4) Term: 0[ 3, 2]=-6.3555391550212481e-04 (5) Term: 0[ 4, 2]=-1.5616610761493973e-05 (6) Term: 0[ 3, 3]= 5.8198412238091107e-02 (7) Term: 0[ 4, 3]=-7.1610651858095689e-02 (8) Term: 0[ 4, 4]= 8.8142183071655555e-02 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.5640853908256793e+02 Term: 1[ 2]= 6.0512448366893544e+01 Term: 1[ 3]= 9.2355848026014695e-03 Term: 1[ 4]= 3.4578565827854724e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 7.4939204966415675e-03 KKT[1][1][ 2]= 8.4015727903284473e-02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1999069712087620e+01 (0) KKT[3][0][ 1, 2]= 1.1898391732106615e+01 (1) KKT[3][0][ 1, 3]= 3.4425217214759435e+01 (2) KKT[3][0][ 1, 4]= 5.1918789390799873e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 4.060075533550848e-02 (1) KKT[2][1] = -8.017159860504143e-08 (2) KKT[3][1] = -3.676303728315108e-04 (3) KKT[4][1] = -9.033286235168220e-06 (4) KKT[2][2] = 2.755040541806059e-02 (5) KKT[3][2] = -6.355539155021248e-04 (6) KKT[4][2] = -1.561661076149397e-05 (7) KKT[3][3] = 5.819841223809111e-02 (8) KKT[4][3] = -7.161065185809569e-02 (9) KKT[4][4] = 8.814218307165556e-02 (10) KKT[1][1] = 1.564085390825679e+02 (11) KKT[2][2] = 6.051244836689354e+01 (12) KKT[3][3] = 9.235584802601469e-03 (13) KKT[4][4] = 3.457856582785472e-01 (14) KKT[5][5] = 7.493920496641568e-03 (15) KKT[6][6] = 8.401572790328447e-02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.199906971208762e+01 (22) KKT[8][2] = 1.189839173210662e+01 (23) KKT[8][3] = 3.442521721475944e+01 (24) KKT[8][4] = 5.191878939079987e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -8.6491268310817411e+00 Trhs[ 0, 1] = -2.4932159733760479e+00 Trhs[ 0, 2] = 1.5331411043595494e-01 Trhs[ 0, 3] = 4.2036716753249048e-01 Trhs[ 0, 4] = 4.3483221455030319e-01 Trhs[ 0, 5] = 6.4341489513490957e-01 Trhs[ 0, 6] = 9.9794031750440659e-01 Trhs[ 0, 7] = -9.0538078917077769e-02 Trhs[ 0, 8] = -3.5527136788005009e-15 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -7.3517438910112032e-02 Tsol[ 0, 1] = -8.1448495331724408e-02 Tsol[ 0, 2] = 5.3706591213298172e-01 Tsol[ 0, 3] = 6.1584033961326146e-01 Tsol[ 0, 4] = 4.8701586675493374e+01 Tsol[ 0, 5] = 6.1368223828224258e+00 Tsol[ 0, 6] = 3.9851461831737836e+00 Tsol[ 0, 7] = -6.9866395943857518e-02 Tsol[ 0, 8] = -1.2782529562891481e-01 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-7.3517438910112032e-02 SOL[ 0][ 0][ 2]=-8.1448495331724408e-02 SOL[ 0][ 0][ 3]= 5.3706591213298172e-01 SOL[ 0][ 0][ 4]= 6.1584033961326146e-01 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 4.8701586675493374e+01 SOL[ 0][ 1][ 2]= 6.1368223828224258e+00 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]= 3.9851461831737836e+00 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-6.9866395943857518e-02 SOL[ 0][ 3][ 2]=-1.2782529562891481e-01 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-3.0531133177191805e-16 resid[ 0][ 2]= 1.4710455076283324e-15 resid[ 0][ 3]= 3.3029134982598407e-15 resid[ 0][ 4]= 8.8817841970012523e-16 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]=-5.5511151231257827e-17 resid[ 1][ 2]= 8.3266726846886741e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 1.1102230246251565e-16 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 0.0000000000000000e+00 resid[ 3][ 2]= 0.0000000000000000e+00 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.302913e-15 max-norm resid_s 8.326673e-17 max-norm resid_c 1.110223e-16 max-norm resid_d 0.000000e+00 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.91e+01 nrm_sol = 4.87e+01 nrm_resid = 3.30e-15 residual_ratio = 4.243312e-17 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-3.0531133177191805e-16 RHS[ 0][ 0][ 2]= 1.4710455076283324e-15 RHS[ 0][ 0][ 3]= 3.3029134982598407e-15 RHS[ 0][ 0][ 4]= 8.8817841970012523e-16 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]=-5.5511151231257827e-17 RHS[ 0][ 1][ 2]= 8.3266726846886741e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 1.1102230246251565e-16 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 0.0000000000000000e+00 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 4.0600755335508484e-02 (0) Term: 0[ 2, 1]=-8.0171598605041427e-08 (1) Term: 0[ 3, 1]=-3.6763037283151076e-04 (2) Term: 0[ 4, 1]=-9.0332862351682204e-06 (3) Term: 0[ 2, 2]= 2.7550405418060590e-02 (4) Term: 0[ 3, 2]=-6.3555391550212481e-04 (5) Term: 0[ 4, 2]=-1.5616610761493973e-05 (6) Term: 0[ 3, 3]= 5.8198412238091107e-02 (7) Term: 0[ 4, 3]=-7.1610651858095689e-02 (8) Term: 0[ 4, 4]= 8.8142183071655555e-02 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.5640853908256793e+02 Term: 1[ 2]= 6.0512448366893544e+01 Term: 1[ 3]= 9.2355848026014695e-03 Term: 1[ 4]= 3.4578565827854724e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 7.4939204966415675e-03 KKT[1][1][ 2]= 8.4015727903284473e-02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1999069712087620e+01 (0) KKT[3][0][ 1, 2]= 1.1898391732106615e+01 (1) KKT[3][0][ 1, 3]= 3.4425217214759435e+01 (2) KKT[3][0][ 1, 4]= 5.1918789390799873e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 4.060075533550848e-02 (1) KKT[2][1] = -8.017159860504143e-08 (2) KKT[3][1] = -3.676303728315108e-04 (3) KKT[4][1] = -9.033286235168220e-06 (4) KKT[2][2] = 2.755040541806059e-02 (5) KKT[3][2] = -6.355539155021248e-04 (6) KKT[4][2] = -1.561661076149397e-05 (7) KKT[3][3] = 5.819841223809111e-02 (8) KKT[4][3] = -7.161065185809569e-02 (9) KKT[4][4] = 8.814218307165556e-02 (10) KKT[1][1] = 1.564085390825679e+02 (11) KKT[2][2] = 6.051244836689354e+01 (12) KKT[3][3] = 9.235584802601469e-03 (13) KKT[4][4] = 3.457856582785472e-01 (14) KKT[5][5] = 7.493920496641568e-03 (15) KKT[6][6] = 8.401572790328447e-02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.199906971208762e+01 (22) KKT[8][2] = 1.189839173210662e+01 (23) KKT[8][3] = 3.442521721475944e+01 (24) KKT[8][4] = 5.191878939079987e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -3.0531133177191805e-16 Trhs[ 0, 1] = 1.4710455076283324e-15 Trhs[ 0, 2] = 3.3029134982598407e-15 Trhs[ 0, 3] = 8.8817841970012523e-16 Trhs[ 0, 4] = -5.5511151231257827e-17 Trhs[ 0, 5] = 8.3266726846886741e-17 Trhs[ 0, 6] = 1.1102230246251565e-16 Trhs[ 0, 7] = 0.0000000000000000e+00 Trhs[ 0, 8] = 0.0000000000000000e+00 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -8.1442994337699641e-19 Tsol[ 0, 1] = 1.1411766090008437e-17 Tsol[ 0, 2] = 4.3555788772526279e-16 Tsol[ 0, 3] = -3.3513292140937855e-16 Tsol[ 0, 4] = -2.2795114084051390e-15 Tsol[ 0, 5] = 4.4610524571525030e-15 Tsol[ 0, 6] = -1.3093689455330033e-15 Tsol[ 0, 7] = 3.8428673965482269e-17 Tsol[ 0, 8] = 2.9153184255551657e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-8.1442994337699641e-19 SOL[ 0][ 0][ 2]= 1.1411766090008437e-17 SOL[ 0][ 0][ 3]= 4.3555788772526279e-16 SOL[ 0][ 0][ 4]=-3.3513292140937855e-16 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]=-2.2795114084051390e-15 SOL[ 0][ 1][ 2]= 4.4610524571525030e-15 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.3093689455330033e-15 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 3.8428673965482269e-17 SOL[ 0][ 3][ 2]= 2.9153184255551657e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 1.3877787807814457e-16 resid[ 0][ 2]=-3.0531133177191805e-16 resid[ 0][ 3]=-2.7755575615628914e-17 resid[ 0][ 4]= 1.3877787807814457e-16 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 0.0000000000000000e+00 resid[ 3][ 2]= 8.8817841970012523e-16 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]=-1.3877787807814457e-17 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 1.0408340855860843e-17 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-8.8817841970012523e-16 resid[ 6][ 2]= 4.4408920985006262e-16 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.053113e-16 max-norm resid_s 0.000000e+00 max-norm resid_c 0.000000e+00 max-norm resid_d 8.881784e-16 max-norm resid_zL 1.387779e-17 max-norm resid_zU 0.000000e+00 max-norm resid_vL 8.881784e-16 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.91e+01 nrm_sol = 4.87e+01 nrm_resid = 8.88e-16 residual_ratio = 1.141059e-17 *** Step Calculated for Iteration: 1 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 7.3517438910112032e-02 delta[ 0][ 2]= 8.1448495331724421e-02 delta[ 0][ 3]=-5.3706591213298127e-01 delta[ 0][ 4]=-6.1584033961326179e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.8701586675493374e+01 delta[ 1][ 2]=-6.1368223828224213e+00 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-3.9851461831737849e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]= 6.9866395943857559e-02 delta[ 3][ 2]= 1.2782529562891512e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-3.0628407234891788e+00 delta[ 4][ 2]=-2.5451755439187052e+00 delta[ 4][ 3]= 8.7315965802105266e-02 delta[ 4][ 4]= 2.2438570879883518e-02 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-1.0151022791300303e-01 delta[ 6][ 2]=-1.7208600583849082e-01 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 1: ************************************************** --> Starting line search in iteration 1 <-- Acceptable Check: overall_error = 2.9236515515232938e+01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 2.3566895846196956e-01 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 9.9794031750440659e-01 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.9236515515232938e+01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 7.8782624220870048e+01 last_obj_val = 1.3080000000000001e+02 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 6.6026457348383438e-01 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 1 The current filter has 0 entries. Relative step size for delta_x = 3.276278e-01 minimal step size ALPHA_MIN = 1.274948E-11 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 3.7204157752851408e+01 (reference 7.8989662078651492e+01): New values of constraint violation = 7.6333501447223284e-03 (reference 1.0884783964214879e+00): reference_theta = 1.088478e+00 reference_gradBarrTDelta = -4.268716e+01 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 1.088478e+00 reference_gradBarrTDelta = -4.268716e+01 Convergence Check: overall_error = 5.7343015345312738e+00 IpData().tol() = 2.4999999999999999e-08 dual_inf = 1.5122408611053844e+00 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 5.7343015345312738e+00 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 2 Acceptable Check: overall_error = 5.7343015345312738e+00 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 1.5122408611053844e+00 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 5.7343015345312738e+00 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 3.6879120268713557e+01 last_obj_val = 7.8782624220870048e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.1362392499287837e+00 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 2 ************************************************** *** Update HessianMatrix for Iteration 2: ************************************************** ************************************************** *** Summary of Iteration: 2: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 2 3.6879120e+01 0.00e+00 1.51e+00 -1.0 4.87e+01 - 5.06e-01 1.00e+00f 1 Nhj ************************************************** *** Beginning Iteration 2 from the following point: ************************************************** Current barrier parameter mu = 1.0000000000000001e-01 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 5.4570254502279858e-01 ||curr_s||_inf = 3.4759317018643443e+01 ||curr_y_c||_inf = 2.0440023907269559e+01 ||curr_y_d||_inf = 5.2759627922295460e-01 ||curr_z_L||_inf = 3.1552994540701773e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 6.1268377632380122e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 6.1584033961326179e-01 ||delta_s||_inf = 4.8701586675493374e+01 ||delta_y_c||_inf = 3.9851461831737849e+00 ||delta_y_d||_inf = 1.2782529562891512e-01 ||delta_z_L||_inf = 3.0628407234891788e+00 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 1.7208600583849082e-01 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 8.3517429010112110e-02 curr_x[ 2]= 1.0692530334843335e-01 curr_x[ 3]= 5.4570254502279858e-01 curr_x[ 4]= 2.6385472261865595e-01 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 3.4759317018643443e+01 curr_s[ 2]= 7.1911811746318008e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-2.0440023907269559e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-3.6656582009296712e-01 curr_y_d[ 2]=-5.2759627922295460e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 8.3517439010112104e-02 curr_slack_x_L[ 2]= 1.0692531334843335e-01 curr_slack_x_L[ 3]= 5.4570255502279863e-01 curr_slack_x_L[ 4]= 2.6385473261865594e-01 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 1.5640854064665310e-02 curr_z_L[ 2]= 2.5493001105765334e-01 curr_z_L[ 3]= 5.4143311321117236e-02 curr_z_L[ 4]= 3.1552994540701773e-01 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 1.3759317228643443e+01 curr_slack_s_L[ 2]= 2.1911812246318005e+00 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.1675770964811376e-01 curr_v_L[ 2]= 6.1268377632380122e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-1.5122408611053844e+00 curr_grad_lag_x[ 2]=-1.2566872909386086e+00 curr_grad_lag_x[ 3]= 4.6751419585912148e-02 curr_grad_lag_x[ 4]= 2.6270196542244051e-04 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-5.0191889555146640e-02 curr_grad_lag_s[ 2]=-8.5087497100846621e-02 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 7.3517438910112032e-02 delta[ 0][ 2]= 8.1448495331724421e-02 delta[ 0][ 3]=-5.3706591213298127e-01 delta[ 0][ 4]=-6.1584033961326179e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.8701586675493374e+01 delta[ 1][ 2]=-6.1368223828224213e+00 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-3.9851461831737849e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]= 6.9866395943857559e-02 delta[ 3][ 2]= 1.2782529562891512e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-3.0628407234891788e+00 delta[ 4][ 2]=-2.5451755439187052e+00 delta[ 4][ 3]= 8.7315965802105266e-02 delta[ 4][ 4]= 2.2438570879883518e-02 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-1.0151022791300303e-01 delta[ 6][ 2]=-1.7208600583849082e-01 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 2: (scaled) (unscaled) Objective...............: 3.6879120268713557e+01 3.6879120268713557e+01 Dual infeasibility......: 1.5122408611053844e+00 1.5122408611053844e+00 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 5.7343015345312738e+00 5.7343015345312738e+00 Overall NLP error.......: 5.7343015345312738e+00 5.7343015345312738e+00 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 3.4751683668498721e+01 curr_d[ 2]= 7.1911811746318008e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-7.6333501447223284e-03 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1984490688314045e+01 (0) jac_d[ 1, 2]= 1.1886526157451877e+01 (1) jac_d[ 1, 3]= 3.4380626811447790e+01 (2) jac_d[ 1, 4]= 5.1991503947462043e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 6.8050211560192517e-02 (0) W[ 2, 1]=-1.8774203919451363e-05 (1) W[ 3, 1]=-1.0338017881601843e-02 (2) W[ 4, 1]=-1.5117640031252677e-04 (3) W[ 2, 2]= 4.6175283220970753e-02 (4) W[ 3, 2]=-8.9812383693679432e-03 (5) W[ 4, 2]=-1.3133574565063664e-04 (6) W[ 3, 3]= 3.8309720419374964e-02 (7) W[ 4, 3]=-7.2320045784901130e-02 (8) W[ 4, 4]= 1.4967290192030422e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 2: ************************************************** Optimality Error for Barrier Sub-problem = 5.634302e+00 Barrier Parameter: 1.000000e-01 ************************************************** *** Solving the Primal Dual System for Iteration 2: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-2.6939537294226188e+00 RHS[ 0][ 0][ 2]=-1.9369885169297627e+00 RHS[ 0][ 0][ 3]=-8.2354281539443686e-02 RHS[ 0][ 0][ 4]=-6.3202776180545830e-02 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 3.5929901760405991e-01 RHS[ 0][ 1][ 2]= 4.8195979434682179e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-7.6333501447223284e-03 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 6.8050211560192517e-02 (0) Term: 0[ 2, 1]=-1.8774203919451363e-05 (1) Term: 0[ 3, 1]=-1.0338017881601843e-02 (2) Term: 0[ 4, 1]=-1.5117640031252677e-04 (3) Term: 0[ 2, 2]= 4.6175283220970753e-02 (4) Term: 0[ 3, 2]=-8.9812383693679432e-03 (5) Term: 0[ 4, 2]=-1.3133574565063664e-04 (6) Term: 0[ 3, 3]= 3.8309720419374964e-02 (7) Term: 0[ 4, 3]=-7.2320045784901130e-02 (8) Term: 0[ 4, 4]= 1.4967290192030422e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.8727650476413138e-01 Term: 1[ 2]= 2.3841876453232627e+00 Term: 1[ 3]= 9.9217624734879994e-02 Term: 1[ 4]= 1.1958472083312865e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 3.0289127194518699e-02 KKT[1][1][ 2]= 2.7961346575829427e-01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1984490688314045e+01 (0) KKT[3][0][ 1, 2]= 1.1886526157451877e+01 (1) KKT[3][0][ 1, 3]= 3.4380626811447790e+01 (2) KKT[3][0][ 1, 4]= 5.1991503947462043e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 6.805021156019252e-02 (1) KKT[2][1] = -1.877420391945136e-05 (2) KKT[3][1] = -1.033801788160184e-02 (3) KKT[4][1] = -1.511764003125268e-04 (4) KKT[2][2] = 4.617528322097075e-02 (5) KKT[3][2] = -8.981238369367943e-03 (6) KKT[4][2] = -1.313357456506366e-04 (7) KKT[3][3] = 3.830972041937496e-02 (8) KKT[4][3] = -7.232004578490113e-02 (9) KKT[4][4] = 1.496729019203042e-01 (10) KKT[1][1] = 1.872765047641314e-01 (11) KKT[2][2] = 2.384187645323263e+00 (12) KKT[3][3] = 9.921762473487999e-02 (13) KKT[4][4] = 1.195847208331287e+00 (14) KKT[5][5] = 3.028912719451870e-02 (15) KKT[6][6] = 2.796134657582943e-01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.198449068831404e+01 (22) KKT[8][2] = 1.188652615745188e+01 (23) KKT[8][3] = 3.438062681144779e+01 (24) KKT[8][4] = 5.199150394746204e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -2.6939537294226188e+00 Trhs[ 0, 1] = -1.9369885169297627e+00 Trhs[ 0, 2] = -8.2354281539443686e-02 Trhs[ 0, 3] = -6.3202776180545830e-02 Trhs[ 0, 4] = 3.5929901760405991e-01 Trhs[ 0, 5] = 4.8195979434682179e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -7.6333501447223284e-03 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -5.3410710546106044e-01 Tsol[ 0, 1] = 8.2964316391840598e-02 Tsol[ 0, 2] = 2.4091324935222547e-01 Tsol[ 0, 3] = 2.1022953971699535e-01 Tsol[ 0, 4] = 1.3805687699092422e+01 Tsol[ 0, 5] = 2.1835892986756651e+00 Tsol[ 0, 6] = -3.5562863484172742e+00 Tsol[ 0, 7] = 5.8863213121552627e-02 Tsol[ 0, 8] = 1.2860117724860409e-01 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-5.3410710546106044e-01 SOL[ 0][ 0][ 2]= 8.2964316391840598e-02 SOL[ 0][ 0][ 3]= 2.4091324935222547e-01 SOL[ 0][ 0][ 4]= 2.1022953971699535e-01 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 1.3805687699092422e+01 SOL[ 0][ 1][ 2]= 2.1835892986756651e+00 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-3.5562863484172742e+00 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 5.8863213121552627e-02 SOL[ 0][ 3][ 2]= 1.2860117724860409e-01 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.5543122344752192e-15 resid[ 0][ 2]= 0.0000000000000000e+00 resid[ 0][ 3]=-2.4494295480792516e-15 resid[ 0][ 4]=-5.8189130597297023e-16 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 3.9898639947466563e-17 resid[ 1][ 2]=-7.6327832942979512e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 9.7144514654701197e-16 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 1.7763568394002505e-15 resid[ 3][ 2]= 0.0000000000000000e+00 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]=-1.3877787807814457e-17 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 2.449430e-15 max-norm resid_s 7.632783e-17 max-norm resid_c 9.714451e-16 max-norm resid_d 1.776357e-15 max-norm resid_zL 1.387779e-17 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 5.63e+00 nrm_sol = 1.38e+01 nrm_resid = 2.45e-15 residual_ratio = 1.259995e-16 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-1.5543122344752192e-15 RHS[ 0][ 0][ 2]= 0.0000000000000000e+00 RHS[ 0][ 0][ 3]=-2.4748605959643667e-15 RHS[ 0][ 0][ 4]=-5.8189130597297023e-16 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 3.9898639947466563e-17 RHS[ 0][ 1][ 2]=-7.6327832942979512e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 9.7144514654701197e-16 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 1.7763568394002505e-15 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 6.8050211560192517e-02 (0) Term: 0[ 2, 1]=-1.8774203919451363e-05 (1) Term: 0[ 3, 1]=-1.0338017881601843e-02 (2) Term: 0[ 4, 1]=-1.5117640031252677e-04 (3) Term: 0[ 2, 2]= 4.6175283220970753e-02 (4) Term: 0[ 3, 2]=-8.9812383693679432e-03 (5) Term: 0[ 4, 2]=-1.3133574565063664e-04 (6) Term: 0[ 3, 3]= 3.8309720419374964e-02 (7) Term: 0[ 4, 3]=-7.2320045784901130e-02 (8) Term: 0[ 4, 4]= 1.4967290192030422e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.8727650476413138e-01 Term: 1[ 2]= 2.3841876453232627e+00 Term: 1[ 3]= 9.9217624734879994e-02 Term: 1[ 4]= 1.1958472083312865e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 3.0289127194518699e-02 KKT[1][1][ 2]= 2.7961346575829427e-01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1984490688314045e+01 (0) KKT[3][0][ 1, 2]= 1.1886526157451877e+01 (1) KKT[3][0][ 1, 3]= 3.4380626811447790e+01 (2) KKT[3][0][ 1, 4]= 5.1991503947462043e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 6.805021156019252e-02 (1) KKT[2][1] = -1.877420391945136e-05 (2) KKT[3][1] = -1.033801788160184e-02 (3) KKT[4][1] = -1.511764003125268e-04 (4) KKT[2][2] = 4.617528322097075e-02 (5) KKT[3][2] = -8.981238369367943e-03 (6) KKT[4][2] = -1.313357456506366e-04 (7) KKT[3][3] = 3.830972041937496e-02 (8) KKT[4][3] = -7.232004578490113e-02 (9) KKT[4][4] = 1.496729019203042e-01 (10) KKT[1][1] = 1.872765047641314e-01 (11) KKT[2][2] = 2.384187645323263e+00 (12) KKT[3][3] = 9.921762473487999e-02 (13) KKT[4][4] = 1.195847208331287e+00 (14) KKT[5][5] = 3.028912719451870e-02 (15) KKT[6][6] = 2.796134657582943e-01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.198449068831404e+01 (22) KKT[8][2] = 1.188652615745188e+01 (23) KKT[8][3] = 3.438062681144779e+01 (24) KKT[8][4] = 5.199150394746204e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -1.5543122344752192e-15 Trhs[ 0, 1] = 0.0000000000000000e+00 Trhs[ 0, 2] = -2.4748605959643667e-15 Trhs[ 0, 3] = -5.8189130597297023e-16 Trhs[ 0, 4] = 3.9898639947466563e-17 Trhs[ 0, 5] = -7.6327832942979512e-17 Trhs[ 0, 6] = 9.7144514654701197e-16 Trhs[ 0, 7] = 1.7763568394002505e-15 Trhs[ 0, 8] = 0.0000000000000000e+00 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 5.8320416710109614e-16 Tsol[ 0, 1] = 8.6651383551643011e-16 Tsol[ 0, 2] = -6.4067518446881190e-16 Tsol[ 0, 3] = 1.6240232839829759e-16 Tsol[ 0, 4] = 1.9296143156882084e-15 Tsol[ 0, 5] = -7.0652445746149666e-16 Tsol[ 0, 6] = -1.6532673771392149e-15 Tsol[ 0, 7] = 1.8547693496777729e-17 Tsol[ 0, 8] = -1.2122591925082811e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 5.8320416710109614e-16 SOL[ 0][ 0][ 2]= 8.6651383551643011e-16 SOL[ 0][ 0][ 3]=-6.4067518446881190e-16 SOL[ 0][ 0][ 4]= 1.6240232839829759e-16 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 1.9296143156882084e-15 SOL[ 0][ 1][ 2]=-7.0652445746149666e-16 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-1.6532673771392149e-15 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 1.8547693496777729e-17 SOL[ 0][ 3][ 2]=-1.2122591925082811e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 2.2204460492503131e-16 resid[ 0][ 2]= 6.6613381477509392e-16 resid[ 0][ 3]= 2.4286128663675299e-16 resid[ 0][ 4]=-8.2290944891649787e-17 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 1.7347234759768071e-18 resid[ 1][ 2]= 6.9388939039072284e-18 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 5.5511151231257827e-17 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 1.7763568394002505e-15 resid[ 3][ 2]= 0.0000000000000000e+00 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-8.3266726846886741e-17 resid[ 6][ 2]= 2.4980018054066022e-16 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 6.661338e-16 max-norm resid_s 6.938894e-18 max-norm resid_c 5.551115e-17 max-norm resid_d 1.776357e-15 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 2.498002e-16 max-norm resid_vU 0.000000e+00 nrm_rhs = 5.63e+00 nrm_sol = 1.38e+01 nrm_resid = 1.78e-15 residual_ratio = 9.137643e-17 *** Step Calculated for Iteration: 2 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 5.3410710546106099e-01 delta[ 0][ 2]=-8.2964316391839737e-02 delta[ 0][ 3]=-2.4091324935222611e-01 delta[ 0][ 4]=-2.1022953971699518e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-1.3805687699092420e+01 delta[ 1][ 2]=-2.1835892986756660e+00 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 3.5562863484172724e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-5.8863213121552606e-02 delta[ 3][ 2]=-1.2860117724860420e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 1.0816881564367995e+00 delta[ 4][ 2]= 8.7810472413526852e-01 delta[ 4][ 3]= 1.5300954149324555e-01 delta[ 4][ 4]= 3.1486888632530829e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 8.6723235664059681e-03 delta[ 6][ 2]= 4.3514680147757591e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 2: ************************************************** --> Starting line search in iteration 2 <-- Acceptable Check: overall_error = 5.7343015345312738e+00 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 1.5122408611053844e+00 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 5.7343015345312738e+00 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 3.6879120268713557e+01 last_obj_val = 7.8782624220870048e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.1362392499287837e+00 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 2 The current filter has 0 entries. Relative step size for delta_x = 4.929382e-01 minimal step size ALPHA_MIN = 5.260747E-13 Starting checks for alpha (primal) = 9.87e-01 Checking acceptability for trial step size alpha_primal_test= 9.866748e-01: New values of barrier function = 3.1307833714662319e+01 (reference 3.7204157752851408e+01): New values of constraint violation = 5.4958283264768149e-02 (reference 7.6333501447223284e-03): reference_theta = 7.633350e-03 reference_gradBarrTDelta = -7.255006e+00 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 7.633350e-03 reference_gradBarrTDelta = -7.255006e+00 Convergence Check: overall_error = 6.6992754355230544e-01 IpData().tol() = 2.4999999999999999e-08 dual_inf = 7.3586884616349546e-02 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 6.6992754355230544e-01 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 3 Acceptable Check: overall_error = 6.6992754355230544e-01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 7.3586884616349546e-02 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 6.6992754355230544e-01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9955742525783503e+01 last_obj_val = 3.6879120268713557e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 2.3112021800063762e-01 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 3 ************************************************** *** Update HessianMatrix for Iteration 3: ************************************************** ************************************************** *** Summary of Iteration: 3: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 3 2.9955743e+01 0.00e+00 7.36e-02 -1.0 1.38e+01 - 1.00e+00 9.87e-01f 1 ************************************************** *** Beginning Iteration 3 from the following point: ************************************************** Current barrier parameter mu = 1.0000000000000001e-01 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 6.1050744687125991e-01 ||curr_s||_inf = 2.1137592962286437e+01 ||curr_y_c||_inf = 1.6931125809660543e+01 ||curr_y_d||_inf = 6.5448381919811305e-01 ||curr_z_L||_inf = 1.1330347351929220e+00 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 6.5619845647155883e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 5.3410710546106099e-01 ||delta_s||_inf = 1.3805687699092420e+01 ||delta_y_c||_inf = 3.5562863484172724e+00 ||delta_y_d||_inf = 1.2860117724860420e-01 ||delta_z_L||_inf = 1.0816881564367995e+00 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 4.3514680147757591e-02 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.1050744687125991e-01 curr_x[ 2]= 2.5066503624300032e-02 curr_x[ 3]= 3.0799951452384799e-01 curr_x[ 4]= 5.6426534980591969e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1137592962286437e+01 curr_s[ 2]= 5.0366886547894598e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.6931125809660543e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.2464466873047713e-01 curr_y_d[ 2]=-6.5448381919811305e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.1050745687125996e-01 curr_slack_x_L[ 2]= 2.5066513624300034e-02 curr_slack_x_L[ 3]= 3.0799952452384799e-01 curr_slack_x_L[ 4]= 5.6426544980591971e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 1.0973290105014648e+00 curr_z_L[ 2]= 1.1330347351929220e+00 curr_z_L[ 3]= 2.0715285281436280e-01 curr_z_L[ 4]= 6.3039883173232603e-01 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 1.3759317228643653e-01 curr_slack_s_L[ 2]= 3.6688704789459514e-02 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.2543003321451972e-01 curr_v_L[ 2]= 6.5619845647155883e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]= 3.8723083528253710e-03 curr_grad_lag_x[ 2]=-3.0218544358913135e-02 curr_grad_lag_x[ 3]=-7.3586884616349546e-02 curr_grad_lag_x[ 4]=-1.9277398771568310e-02 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-7.8536448404259440e-04 curr_grad_lag_s[ 2]=-1.7146372734457849e-03 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 5.3410710546106099e-01 delta[ 0][ 2]=-8.2964316391839737e-02 delta[ 0][ 3]=-2.4091324935222611e-01 delta[ 0][ 4]=-2.1022953971699518e-01 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-1.3805687699092420e+01 delta[ 1][ 2]=-2.1835892986756660e+00 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 3.5562863484172724e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-5.8863213121552606e-02 delta[ 3][ 2]=-1.2860117724860420e-01 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 1.0816881564367995e+00 delta[ 4][ 2]= 8.7810472413526852e-01 delta[ 4][ 3]= 1.5300954149324555e-01 delta[ 4][ 4]= 3.1486888632530829e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 8.6723235664059681e-03 delta[ 6][ 2]= 4.3514680147757591e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 3: (scaled) (unscaled) Objective...............: 2.9955742525783503e+01 2.9955742525783503e+01 Dual infeasibility......: 7.3586884616349546e-02 7.3586884616349546e-02 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 6.6992754355230544e-01 6.6992754355230544e-01 Overall NLP error.......: 6.6992754355230544e-01 6.6992754355230544e-01 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.1082634679021670e+01 curr_d[ 2]= 5.0366886547894607e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-5.4958283264767260e-02 curr_d - curr_s[ 2]= 8.8817841970012523e-16 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1803657166624788e+01 (0) jac_d[ 1, 2]= 1.1894529671351799e+01 (1) jac_d[ 1, 3]= 3.4547797039114144e+01 (2) jac_d[ 1, 4]= 5.2059817113711276e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2961977264479624e-01 (0) W[ 2, 1]=-1.9359244327110821e-04 (1) W[ 3, 1]=-2.5665216490371118e-01 (2) W[ 4, 1]=-1.4220540729077420e-03 (3) W[ 2, 2]= 9.2665923029522784e-02 (4) W[ 3, 2]=-7.1506133743770199e-03 (5) W[ 4, 2]=-3.9620000387046715e-05 (6) W[ 3, 3]= 5.1893307868279581e-01 (7) W[ 4, 3]=-5.2525598112222238e-02 (8) W[ 4, 4]= 3.0211010583495224e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 3: ************************************************** Optimality Error for Barrier Sub-problem = 5.699275e-01 sub_problem_error < kappa_eps * mu (1.000000e+00) Updating mu= 1.0000000000000001e-01 and tau= 9.8999999999999999e-01 to new_mu= 2.0000000000000004e-02 and new_tau= 9.8999999999999999e-01 Barrier Parameter: 2.000000e-02 ************************************************** *** Solving the Primal Dual System for Iteration 3: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 1.0684418862324441e+00 RHS[ 0][ 0][ 2]= 3.0493917903812667e-01 RHS[ 0][ 0][ 3]= 6.8631003019044179e-02 RHS[ 0][ 0][ 4]= 2.5667852454646362e-01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 2.7928881895233321e-01 RHS[ 0][ 1][ 2]= 1.0935711666036238e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-5.4958283264767260e-02 RHS[ 0][ 3][ 2]= 8.8817841970012523e-16 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2961977264479624e-01 (0) Term: 0[ 2, 1]=-1.9359244327110821e-04 (1) Term: 0[ 3, 1]=-2.5665216490371118e-01 (2) Term: 0[ 4, 1]=-1.4220540729077420e-03 (3) Term: 0[ 2, 2]= 9.2665923029522784e-02 (4) Term: 0[ 3, 2]=-7.1506133743770199e-03 (5) Term: 0[ 4, 2]=-3.9620000387046715e-05 (6) Term: 0[ 3, 3]= 5.1893307868279581e-01 (7) Term: 0[ 4, 3]=-5.2525598112222238e-02 (8) Term: 0[ 4, 4]= 3.0211010583495224e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.7974047624660918e+00 Term: 1[ 2]= 4.5201129769180703e+01 Term: 1[ 3]= 6.7257523573976563e-01 Term: 1[ 4]= 1.1172026072997257e+01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 3.0919414542523573e+00 KKT[1][1][ 2]= 1.7885571601319690e+01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1803657166624788e+01 (0) KKT[3][0][ 1, 2]= 1.1894529671351799e+01 (1) KKT[3][0][ 1, 3]= 3.4547797039114144e+01 (2) KKT[3][0][ 1, 4]= 5.2059817113711276e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.296197726447962e-01 (1) KKT[2][1] = -1.935924432711082e-04 (2) KKT[3][1] = -2.566521649037112e-01 (3) KKT[4][1] = -1.422054072907742e-03 (4) KKT[2][2] = 9.266592302952278e-02 (5) KKT[3][2] = -7.150613374377020e-03 (6) KKT[4][2] = -3.962000038704671e-05 (7) KKT[3][3] = 5.189330786827958e-01 (8) KKT[4][3] = -5.252559811222224e-02 (9) KKT[4][4] = 3.021101058349522e-01 (10) KKT[1][1] = 1.797404762466092e+00 (11) KKT[2][2] = 4.520112976918070e+01 (12) KKT[3][3] = 6.725752357397656e-01 (13) KKT[4][4] = 1.117202607299726e+01 (14) KKT[5][5] = 3.091941454252357e+00 (15) KKT[6][6] = 1.788557160131969e+01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.180365716662479e+01 (22) KKT[8][2] = 1.189452967135180e+01 (23) KKT[8][3] = 3.454779703911414e+01 (24) KKT[8][4] = 5.205981711371128e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 1.0684418862324441e+00 Trhs[ 0, 1] = 3.0493917903812667e-01 Trhs[ 0, 2] = 6.8631003019044179e-02 Trhs[ 0, 3] = 2.5667852454646362e-01 Trhs[ 0, 4] = 2.7928881895233321e-01 Trhs[ 0, 5] = 1.0935711666036238e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -5.4958283264767260e-02 Trhs[ 0, 8] = 8.8817841970012523e-16 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 9.3943926802057334e-03 Tsol[ 0, 1] = -1.2165304472800769e-02 Tsol[ 0, 2] = 4.6683086101839966e-03 Tsol[ 0, 3] = -1.8973968175889596e-03 Tsol[ 0, 4] = 8.3647545802574316e-02 Tsol[ 0, 5] = 2.8330078269647872e-03 Tsol[ 0, 6] = 1.4303226837705822e+00 Tsol[ 0, 7] = -2.0655504538880903e-02 Tsol[ 0, 8] = -5.8687152324084585e-02 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 9.3943926802057334e-03 SOL[ 0][ 0][ 2]=-1.2165304472800769e-02 SOL[ 0][ 0][ 3]= 4.6683086101839966e-03 SOL[ 0][ 0][ 4]=-1.8973968175889596e-03 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 8.3647545802574316e-02 SOL[ 0][ 1][ 2]= 2.8330078269647872e-03 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]= 1.4303226837705822e+00 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-2.0655504538880903e-02 SOL[ 0][ 3][ 2]=-5.8687152324084585e-02 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-3.2742905609062234e-16 resid[ 0][ 2]=-1.2143064331837650e-15 resid[ 0][ 3]= 1.7486012637846216e-15 resid[ 0][ 4]= 9.2773011495239643e-15 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 3.8163916471489756e-17 resid[ 1][ 2]= 2.7755575615628914e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 1.3010426069826053e-18 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 1.3877787807814457e-17 resid[ 3][ 2]=-7.1991024253037494e-17 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 9.277301e-15 max-norm resid_s 3.816392e-17 max-norm resid_c 1.301043e-18 max-norm resid_d 7.199102e-17 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 6.50e-01 nrm_sol = 1.43e+00 nrm_resid = 9.28e-15 residual_ratio = 4.459704e-15 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-3.2742905609062234e-16 RHS[ 0][ 0][ 2]=-1.2143064331837650e-15 RHS[ 0][ 0][ 3]= 1.7486012637846216e-15 RHS[ 0][ 0][ 4]= 9.2773011495239643e-15 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 3.8163916471489756e-17 RHS[ 0][ 1][ 2]= 2.7755575615628914e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 1.3010426069826053e-18 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 1.3877787807814457e-17 RHS[ 0][ 3][ 2]=-7.1991024253037494e-17 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2961977264479624e-01 (0) Term: 0[ 2, 1]=-1.9359244327110821e-04 (1) Term: 0[ 3, 1]=-2.5665216490371118e-01 (2) Term: 0[ 4, 1]=-1.4220540729077420e-03 (3) Term: 0[ 2, 2]= 9.2665923029522784e-02 (4) Term: 0[ 3, 2]=-7.1506133743770199e-03 (5) Term: 0[ 4, 2]=-3.9620000387046715e-05 (6) Term: 0[ 3, 3]= 5.1893307868279581e-01 (7) Term: 0[ 4, 3]=-5.2525598112222238e-02 (8) Term: 0[ 4, 4]= 3.0211010583495224e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.7974047624660918e+00 Term: 1[ 2]= 4.5201129769180703e+01 Term: 1[ 3]= 6.7257523573976563e-01 Term: 1[ 4]= 1.1172026072997257e+01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 3.0919414542523573e+00 KKT[1][1][ 2]= 1.7885571601319690e+01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1803657166624788e+01 (0) KKT[3][0][ 1, 2]= 1.1894529671351799e+01 (1) KKT[3][0][ 1, 3]= 3.4547797039114144e+01 (2) KKT[3][0][ 1, 4]= 5.2059817113711276e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.296197726447962e-01 (1) KKT[2][1] = -1.935924432711082e-04 (2) KKT[3][1] = -2.566521649037112e-01 (3) KKT[4][1] = -1.422054072907742e-03 (4) KKT[2][2] = 9.266592302952278e-02 (5) KKT[3][2] = -7.150613374377020e-03 (6) KKT[4][2] = -3.962000038704671e-05 (7) KKT[3][3] = 5.189330786827958e-01 (8) KKT[4][3] = -5.252559811222224e-02 (9) KKT[4][4] = 3.021101058349522e-01 (10) KKT[1][1] = 1.797404762466092e+00 (11) KKT[2][2] = 4.520112976918070e+01 (12) KKT[3][3] = 6.725752357397656e-01 (13) KKT[4][4] = 1.117202607299726e+01 (14) KKT[5][5] = 3.091941454252357e+00 (15) KKT[6][6] = 1.788557160131969e+01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.180365716662479e+01 (22) KKT[8][2] = 1.189452967135180e+01 (23) KKT[8][3] = 3.454779703911414e+01 (24) KKT[8][4] = 5.205981711371128e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -3.2742905609062234e-16 Trhs[ 0, 1] = -1.2143064331837650e-15 Trhs[ 0, 2] = 1.7486012637846216e-15 Trhs[ 0, 3] = 9.2773011495239643e-15 Trhs[ 0, 4] = 3.8163916471489756e-17 Trhs[ 0, 5] = 2.7755575615628914e-17 Trhs[ 0, 6] = 1.3010426069826053e-18 Trhs[ 0, 7] = 1.3877787807814457e-17 Trhs[ 0, 8] = -7.1991024253037494e-17 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -1.2088590988335858e-18 Tsol[ 0, 1] = 5.4906290356444400e-18 Tsol[ 0, 2] = -1.1644043812575272e-17 Tsol[ 0, 3] = 8.6633164827469660e-18 Tsol[ 0, 4] = 8.5896313144261566e-17 Tsol[ 0, 5] = -1.8028403966685276e-17 Tsol[ 0, 6] = -2.2070223941380571e-15 Tsol[ 0, 7] = 2.2742245490669423e-16 Tsol[ 0, 8] = -3.5020388561929431e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-1.2088590988335858e-18 SOL[ 0][ 0][ 2]= 5.4906290356444400e-18 SOL[ 0][ 0][ 3]=-1.1644043812575272e-17 SOL[ 0][ 0][ 4]= 8.6633164827469660e-18 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 8.5896313144261566e-17 SOL[ 0][ 1][ 2]=-1.8028403966685276e-17 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-2.2070223941380571e-15 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 2.2742245490669423e-16 SOL[ 0][ 3][ 2]=-3.5020388561929431e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.0538445116559103e-16 resid[ 0][ 2]= 1.1796119636642288e-16 resid[ 0][ 3]=-1.3877787807814457e-16 resid[ 0][ 4]= 6.2450045135165055e-17 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 4.3368086899420177e-19 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-2.7755575615628914e-17 resid[ 3][ 2]=-1.8214596497756474e-17 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]=-3.4694469519536142e-18 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 2.1684043449710089e-18 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 1.387779e-16 max-norm resid_s 0.000000e+00 max-norm resid_c 4.336809e-19 max-norm resid_d 2.775558e-17 max-norm resid_zL 3.469447e-18 max-norm resid_zU 0.000000e+00 max-norm resid_vL 2.168404e-18 max-norm resid_vU 0.000000e+00 nrm_rhs = 6.50e-01 nrm_sol = 1.43e+00 nrm_resid = 1.39e-16 residual_ratio = 6.671211e-17 *** Step Calculated for Iteration: 3 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]=-9.3943926802057352e-03 delta[ 0][ 2]= 1.2165304472800774e-02 delta[ 0][ 3]=-4.6683086101840078e-03 delta[ 0][ 4]= 1.8973968175889683e-03 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-8.3647545802574233e-02 delta[ 1][ 2]=-2.8330078269648055e-03 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-1.4303226837705845e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]= 2.0655504538881132e-02 delta[ 3][ 2]= 5.8687152324084238e-02 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-1.0476838517357405e+00 delta[ 4][ 2]=-8.8504302955370195e-01 delta[ 4][ 3]=-1.3907789887139324e-01 delta[ 4][ 4]=-2.9715349003495795e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-2.1440669022923728e-02 delta[ 6][ 2]=-6.0401589597530024e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 3: ************************************************** --> Starting line search in iteration 3 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 6.6992754355230544e-01 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 7.3586884616349546e-02 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 6.6992754355230544e-01 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9955742525783503e+01 last_obj_val = 3.6879120268713557e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 2.3112021800063762e-01 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 3 The current filter has 0 entries. Relative step size for delta_x = 1.186782e-02 minimal step size ALPHA_MIN = 4.230850E-09 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 3.0228106092943143e+01 (reference 3.0226160763559268e+01): New values of constraint violation = 2.0173667050649158e-05 (reference 5.4958283264768149e-02): reference_theta = 5.495828e-02 reference_gradBarrTDelta = -6.494946e-03 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 5.495828e-02 reference_gradBarrTDelta = -6.494946e-03 Convergence Check: overall_error = 2.9842353507915902e-02 IpData().tol() = 2.4999999999999999e-08 dual_inf = 3.9825445417251970e-05 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.9842353507915902e-02 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 4 Acceptable Check: overall_error = 2.9842353507915902e-02 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 3.9825445417251970e-05 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.9842353507915902e-02 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9945312615447051e+01 last_obj_val = 2.9955742525783503e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 3.4829859585675562e-04 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 4 ************************************************** *** Update HessianMatrix for Iteration 4: ************************************************** ************************************************** *** Summary of Iteration: 4: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 4 2.9945313e+01 0.00e+00 3.98e-05 -1.7 8.36e-02 - 1.00e+00 1.00e+00h 1 ************************************************** *** Beginning Iteration 4 from the following point: ************************************************** Current barrier parameter mu = 2.0000000000000004e-02 Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01 ||curr_x||_inf = 6.0111305419105421e-01 ||curr_s||_inf = 2.1053945416483863e+01 ||curr_y_c||_inf = 1.8361448493431126e+01 ||curr_y_d||_inf = 5.9579666687402877e-01 ||curr_z_L||_inf = 3.3324534169736808e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.9579686687402877e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 1.2165304472800774e-02 ||delta_s||_inf = 8.3647545802574233e-02 ||delta_y_c||_inf = 1.4303226837705845e+00 ||delta_y_d||_inf = 5.8687152324084238e-02 ||delta_z_L||_inf = 1.0476838517357405e+00 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 6.0401589597530024e-02 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.0111305419105421e-01 curr_x[ 2]= 3.7231808097100805e-02 curr_x[ 3]= 3.0333120591366397e-01 curr_x[ 4]= 5.8323931798180940e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1053945416483863e+01 curr_s[ 2]= 5.0338556469624951e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8361448493431126e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.0398916419159597e-01 curr_y_d[ 2]=-5.9579666687402877e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.0111306419105426e-01 curr_slack_x_L[ 2]= 3.7231818097100806e-02 curr_slack_x_L[ 3]= 3.0333121591366397e-01 curr_slack_x_L[ 4]= 5.8323941798180942e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 4.9645158765724284e-02 curr_z_L[ 2]= 2.4799170563922002e-01 curr_z_L[ 3]= 6.8074953942969557e-02 curr_z_L[ 4]= 3.3324534169736808e-01 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 5.3945626483862696e-02 curr_slack_s_L[ 2]= 3.3855696962494797e-02 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.0398936419159598e-01 curr_v_L[ 2]= 5.9579686687402877e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-5.0734982659506045e-08 curr_grad_lag_x[ 2]=-3.9825445417251970e-05 curr_grad_lag_x[ 3]=-1.8922175486352222e-05 curr_grad_lag_x[ 4]=-2.8665229490631994e-05 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-2.0000000000575113e-07 curr_grad_lag_s[ 2]=-2.0000000000575113e-07 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]=-9.3943926802057352e-03 delta[ 0][ 2]= 1.2165304472800774e-02 delta[ 0][ 3]=-4.6683086101840078e-03 delta[ 0][ 4]= 1.8973968175889683e-03 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-8.3647545802574233e-02 delta[ 1][ 2]=-2.8330078269648055e-03 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-1.4303226837705845e+00 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]= 2.0655504538881132e-02 delta[ 3][ 2]= 5.8687152324084238e-02 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-1.0476838517357405e+00 delta[ 4][ 2]=-8.8504302955370195e-01 delta[ 4][ 3]=-1.3907789887139324e-01 delta[ 4][ 4]=-2.9715349003495795e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]=-2.1440669022923728e-02 delta[ 6][ 2]=-6.0401589597530024e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 4: (scaled) (unscaled) Objective...............: 2.9945312615447051e+01 2.9945312615447051e+01 Dual infeasibility......: 3.9825445417251970e-05 3.9825445417251970e-05 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.9842353507915902e-02 2.9842353507915902e-02 Overall NLP error.......: 2.9842353507915902e-02 2.9842353507915902e-02 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.1053925242816813e+01 curr_d[ 2]= 5.0338556469624942e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-2.0173667049760979e-05 curr_d - curr_s[ 2]=-8.8817841970012523e-16 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1803717741464771e+01 (0) jac_d[ 1, 2]= 1.1891750367844269e+01 (1) jac_d[ 1, 3]= 3.4548333741645472e+01 (2) jac_d[ 1, 4]= 5.2057829831274105e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2520753270018342e-01 (0) W[ 2, 1]=-2.8191643735521194e-04 (1) W[ 3, 1]=-2.4781273611387000e-01 (2) W[ 4, 1]=-1.4410901608037968e-03 (3) W[ 2, 2]= 8.9501988165133259e-02 (4) W[ 3, 2]=-1.0415428942485892e-02 (5) W[ 4, 2]=-6.0568203252760224e-05 (6) W[ 3, 3]= 5.0260734681363028e-01 (7) W[ 4, 3]=-5.3241209737109441e-02 (8) W[ 4, 4]= 2.9178817341042562e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 4: ************************************************** Optimality Error for Barrier Sub-problem = 1.076682e-02 sub_problem_error < kappa_eps * mu (2.000000e-01) Updating mu= 2.0000000000000004e-02 and tau= 9.8999999999999999e-01 to new_mu= 2.8284271247461909e-03 and new_tau= 9.9717157287525382e-01 sub_problem_error < kappa_eps * mu (2.828427e-02) Updating mu= 2.8284271247461909e-03 and tau= 9.9717157287525382e-01 to new_mu= 1.5042412372345582e-04 and new_tau= 9.9984957587627654e-01 Barrier Parameter: 1.504241e-04 ************************************************** *** Solving the Primal Dual System for Iteration 4: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 4.9394866888990988e-02 RHS[ 0][ 0][ 2]= 2.4391167814604045e-01 RHS[ 0][ 0][ 3]= 6.7560126105459459e-02 RHS[ 0][ 0][ 4]= 3.3063756347666895e-01 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.0120072604784363e-01 RHS[ 0][ 1][ 2]= 5.9135357202464622e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-2.0173667049760979e-05 RHS[ 0][ 3][ 2]=-8.8817841970012523e-16 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2520753270018342e-01 (0) Term: 0[ 2, 1]=-2.8191643735521194e-04 (1) Term: 0[ 3, 1]=-2.4781273611387000e-01 (2) Term: 0[ 4, 1]=-1.4410901608037968e-03 (3) Term: 0[ 2, 2]= 8.9501988165133259e-02 (4) Term: 0[ 3, 2]=-1.0415428942485892e-02 (5) Term: 0[ 4, 2]=-6.0568203252760224e-05 (6) Term: 0[ 3, 3]= 5.0260734681363028e-01 (7) Term: 0[ 4, 3]=-5.3241209737109441e-02 (8) Term: 0[ 4, 4]= 2.9178817341042562e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 8.2588720364169893e-02 Term: 1[ 2]= 6.6607465956257128e+00 Term: 1[ 3]= 2.2442449168286549e-01 Term: 1[ 4]= 5.7136971786046464e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 7.4888251471589715e+00 KKT[1][1][ 2]= 1.7598127356056210e+01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1803717741464771e+01 (0) KKT[3][0][ 1, 2]= 1.1891750367844269e+01 (1) KKT[3][0][ 1, 3]= 3.4548333741645472e+01 (2) KKT[3][0][ 1, 4]= 5.2057829831274105e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.252075327001834e-01 (1) KKT[2][1] = -2.819164373552119e-04 (2) KKT[3][1] = -2.478127361138700e-01 (3) KKT[4][1] = -1.441090160803797e-03 (4) KKT[2][2] = 8.950198816513326e-02 (5) KKT[3][2] = -1.041542894248589e-02 (6) KKT[4][2] = -6.056820325276022e-05 (7) KKT[3][3] = 5.026073468136303e-01 (8) KKT[4][3] = -5.324120973710944e-02 (9) KKT[4][4] = 2.917881734104256e-01 (10) KKT[1][1] = 8.258872036416989e-02 (11) KKT[2][2] = 6.660746595625713e+00 (12) KKT[3][3] = 2.244244916828655e-01 (13) KKT[4][4] = 5.713697178604646e+00 (14) KKT[5][5] = 7.488825147158972e+00 (15) KKT[6][6] = 1.759812735605621e+01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.180371774146477e+01 (22) KKT[8][2] = 1.189175036784427e+01 (23) KKT[8][3] = 3.454833374164547e+01 (24) KKT[8][4] = 5.205782983127411e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 4.9394866888990988e-02 Trhs[ 0, 1] = 2.4391167814604045e-01 Trhs[ 0, 2] = 6.7560126105459459e-02 Trhs[ 0, 3] = 3.3063756347666895e-01 Trhs[ 0, 4] = 4.0120072604784363e-01 Trhs[ 0, 5] = 5.9135357202464622e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -2.0173667049760979e-05 Trhs[ 0, 8] = -8.8817841970012523e-16 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -3.2043419447665922e-02 Tsol[ 0, 1] = 3.4467436442667268e-02 Tsol[ 0, 2] = -8.5009307475806817e-03 Tsol[ 0, 3] = 6.0769137525793371e-03 Tsol[ 0, 4] = 5.4324794480247025e-02 Tsol[ 0, 5] = 3.2857435929513540e-02 Tsol[ 0, 6] = 1.7717710171043587e-02 Tsol[ 0, 7] = 5.6281609700731816e-03 Tsol[ 0, 8] = -1.3124229943609844e-02 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-3.2043419447665922e-02 SOL[ 0][ 0][ 2]= 3.4467436442667268e-02 SOL[ 0][ 0][ 3]=-8.5009307475806817e-03 SOL[ 0][ 0][ 4]= 6.0769137525793371e-03 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 5.4324794480247025e-02 SOL[ 0][ 1][ 2]= 3.2857435929513540e-02 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]= 1.7717710171043587e-02 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 5.6281609700731816e-03 SOL[ 0][ 3][ 2]=-1.3124229943609844e-02 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-3.1489777207451191e-15 resid[ 0][ 2]= 8.7633689909751011e-15 resid[ 0][ 3]=-2.1877051765203243e-14 resid[ 0][ 4]= 2.5307426781365910e-14 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 3.5561831257524545e-17 resid[ 1][ 2]= 2.4286128663675299e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 1.7347234759768071e-18 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 4.8572257327350599e-17 resid[ 3][ 2]=-1.3877787807814457e-17 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 2.530743e-14 max-norm resid_s 3.556183e-17 max-norm resid_c 1.734723e-18 max-norm resid_d 4.857226e-17 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.97e-02 nrm_sol = 2.96e-01 nrm_resid = 2.53e-14 residual_ratio = 7.771680e-14 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-3.1489777207451191e-15 RHS[ 0][ 0][ 2]= 8.7633689909751011e-15 RHS[ 0][ 0][ 3]=-2.1877051765203243e-14 RHS[ 0][ 0][ 4]= 2.5307426781365910e-14 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 3.5561831257524545e-17 RHS[ 0][ 1][ 2]= 2.4286128663675299e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 1.7347234759768071e-18 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]= 4.8572257327350599e-17 RHS[ 0][ 3][ 2]=-1.3877787807814457e-17 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2520753270018342e-01 (0) Term: 0[ 2, 1]=-2.8191643735521194e-04 (1) Term: 0[ 3, 1]=-2.4781273611387000e-01 (2) Term: 0[ 4, 1]=-1.4410901608037968e-03 (3) Term: 0[ 2, 2]= 8.9501988165133259e-02 (4) Term: 0[ 3, 2]=-1.0415428942485892e-02 (5) Term: 0[ 4, 2]=-6.0568203252760224e-05 (6) Term: 0[ 3, 3]= 5.0260734681363028e-01 (7) Term: 0[ 4, 3]=-5.3241209737109441e-02 (8) Term: 0[ 4, 4]= 2.9178817341042562e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 8.2588720364169893e-02 Term: 1[ 2]= 6.6607465956257128e+00 Term: 1[ 3]= 2.2442449168286549e-01 Term: 1[ 4]= 5.7136971786046464e+00 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 7.4888251471589715e+00 KKT[1][1][ 2]= 1.7598127356056210e+01 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1803717741464771e+01 (0) KKT[3][0][ 1, 2]= 1.1891750367844269e+01 (1) KKT[3][0][ 1, 3]= 3.4548333741645472e+01 (2) KKT[3][0][ 1, 4]= 5.2057829831274105e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.252075327001834e-01 (1) KKT[2][1] = -2.819164373552119e-04 (2) KKT[3][1] = -2.478127361138700e-01 (3) KKT[4][1] = -1.441090160803797e-03 (4) KKT[2][2] = 8.950198816513326e-02 (5) KKT[3][2] = -1.041542894248589e-02 (6) KKT[4][2] = -6.056820325276022e-05 (7) KKT[3][3] = 5.026073468136303e-01 (8) KKT[4][3] = -5.324120973710944e-02 (9) KKT[4][4] = 2.917881734104256e-01 (10) KKT[1][1] = 8.258872036416989e-02 (11) KKT[2][2] = 6.660746595625713e+00 (12) KKT[3][3] = 2.244244916828655e-01 (13) KKT[4][4] = 5.713697178604646e+00 (14) KKT[5][5] = 7.488825147158972e+00 (15) KKT[6][6] = 1.759812735605621e+01 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.180371774146477e+01 (22) KKT[8][2] = 1.189175036784427e+01 (23) KKT[8][3] = 3.454833374164547e+01 (24) KKT[8][4] = 5.205782983127411e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -3.1489777207451191e-15 Trhs[ 0, 1] = 8.7633689909751011e-15 Trhs[ 0, 2] = -2.1877051765203243e-14 Trhs[ 0, 3] = 2.5307426781365910e-14 Trhs[ 0, 4] = 3.5561831257524545e-17 Trhs[ 0, 5] = 2.4286128663675299e-17 Trhs[ 0, 6] = 1.7347234759768071e-18 Trhs[ 0, 7] = 4.8572257327350599e-17 Trhs[ 0, 8] = -1.3877787807814457e-17 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -2.8618560220452827e-15 Tsol[ 0, 1] = 3.3997080824530313e-15 Tsol[ 0, 2] = -1.2211992307547422e-15 Tsol[ 0, 3] = 6.8508189382296977e-16 Tsol[ 0, 4] = 7.2844941780515271e-17 Tsol[ 0, 5] = -1.9473080056714291e-16 Tsol[ 0, 6] = -9.3669367624494712e-16 Tsol[ 0, 7] = 5.0996120059172939e-16 Tsol[ 0, 8] = -3.4511835571910390e-15 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-2.8618560220452827e-15 SOL[ 0][ 0][ 2]= 3.3997080824530313e-15 SOL[ 0][ 0][ 3]=-1.2211992307547422e-15 SOL[ 0][ 0][ 4]= 6.8508189382296977e-16 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 7.2844941780515271e-17 SOL[ 0][ 1][ 2]=-1.9473080056714291e-16 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-9.3669367624494712e-16 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 5.0996120059172939e-16 SOL[ 0][ 3][ 2]=-3.4511835571910390e-15 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 1.5157899436577020e-17 resid[ 0][ 2]=-3.9234566116819192e-18 resid[ 0][ 3]=-5.6581800876587263e-18 resid[ 0][ 4]=-6.1169331318916553e-17 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-3.4694469519536142e-18 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.0408340855860843e-16 resid[ 3][ 2]=-1.3877787807814457e-17 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 6.9388939039072284e-18 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 1.6805133673525319e-18 resid[ 6][ 2]= 1.9515639104739080e-18 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 6.116933e-17 max-norm resid_s 0.000000e+00 max-norm resid_c 3.469447e-18 max-norm resid_d 1.040834e-16 max-norm resid_zL 6.938894e-18 max-norm resid_zU 0.000000e+00 max-norm resid_vL 1.951564e-18 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.97e-02 nrm_sol = 2.96e-01 nrm_resid = 1.04e-16 residual_ratio = 3.196306e-16 *** Step Calculated for Iteration: 4 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 3.2043419447663063e-02 delta[ 0][ 2]=-3.4467436442663868e-02 delta[ 0][ 3]= 8.5009307475794604e-03 delta[ 0][ 4]=-6.0769137525786519e-03 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-5.4324794480246956e-02 delta[ 1][ 2]=-3.2857435929513734e-02 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-1.7717710171044523e-02 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-5.6281609700726716e-03 delta[ 3][ 2]= 1.3124229943606394e-02 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-5.2041341128007255e-02 delta[ 4][ 2]=-1.4372642141797438e-02 delta[ 4][ 3]=-6.9486863838561341e-02 delta[ 4][ 4]=-2.9594458223918602e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 5.6279624743139035e-03 delta[ 6][ 2]=-1.3124428439365163e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 4: ************************************************** --> Starting line search in iteration 4 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 2.9842353507915902e-02 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 3.9825445417251970e-05 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.9842353507915902e-02 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9945312615447051e+01 last_obj_val = 2.9955742525783503e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 3.4829859585675562e-04 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 4 The current filter has 0 entries. Relative step size for delta_x = 3.323022e-02 minimal step size ALPHA_MIN = 2.038711E-13 Starting checks for alpha (primal) = 9.93e-01 Checking acceptability for trial step size alpha_primal_test= 9.928710e-01: New values of barrier function = 2.9900084025862331e+01 (reference 2.9947439563499405e+01): New values of constraint violation = 1.8956964213168170e-04 (reference 2.0173667050649158e-05): reference_theta = 2.017367e-05 reference_gradBarrTDelta = -4.947652e-02 Checking Armijo Condition... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 2.017367e-05 reference_gradBarrTDelta = -4.947652e-02 Convergence Check: overall_error = 1.1527623040694213e-02 IpData().tol() = 2.4999999999999999e-08 dual_inf = 1.1527623040694213e-02 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 1.8145491853971407e-04 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.6652207192442508e-03 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 5 Acceptable Check: overall_error = 1.1527623040694213e-02 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 1.1527623040694213e-02 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 1.8145491853971407e-04 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.6652207192442508e-03 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9895751787428928e+01 last_obj_val = 2.9945312615447051e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.6577883162303742e-03 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 5 ************************************************** *** Update HessianMatrix for Iteration 5: ************************************************** ************************************************** *** Summary of Iteration: 5: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 5 2.9895752e+01 1.81e-04 1.15e-02 -3.8 5.43e-02 - 9.54e-01 9.93e-01f 1 ************************************************** *** Beginning Iteration 5 from the following point: ************************************************** Current barrier parameter mu = 1.5042412372345582e-04 Current fraction-to-the-boundary parameter tau = 9.9984957587627654e-01 ||curr_x||_inf = 6.3292803535819031e-01 ||curr_s||_inf = 2.1000007904723592e+01 ||curr_y_c||_inf = 1.8379039893635380e+01 ||curr_y_d||_inf = 5.8276599987012223e-01 ||curr_z_L||_inf = 2.3428289735127442e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.8327862064003344e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 3.4467436442663868e-02 ||delta_s||_inf = 5.4324794480246956e-02 ||delta_y_c||_inf = 1.7717710171044523e-02 ||delta_y_d||_inf = 1.3124229943606394e-02 ||delta_z_L||_inf = 2.9594458223918602e-01 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 1.3124428439365163e-02 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.3292803535819031e-01 curr_x[ 2]= 3.0100908083491723e-03 curr_x[ 3]= 3.1177153332875490e-01 curr_x[ 4]= 5.2290340504705539e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1000007904723592e+01 curr_s[ 2]= 5.0012324524558895e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8379039893635380e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.0957720187156121e-01 curr_y_d[ 2]=-5.8276599987012223e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.3292804535819036e-01 curr_slack_x_L[ 2]= 3.0101008083491722e-03 curr_slack_x_L[ 3]= 3.1177154332875490e-01 curr_slack_x_L[ 4]= 5.2290350504705541e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 7.4678295044483534e-06 curr_z_L[ 2]= 2.3428289735127442e-01 curr_z_L[ 3]= 1.7975022750407188e-03 curr_z_L[ 4]= 5.0969647239301086e-02 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 8.1147235917455873e-06 curr_slack_s_L[ 2]= 1.2325024558892395e-03 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.0935738614962913e-01 curr_v_L[ 2]= 5.8327862064003344e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-2.0670352531831915e-03 curr_grad_lag_x[ 2]=-5.1559855680585742e-04 curr_grad_lag_x[ 3]=-2.9063595997216307e-03 curr_grad_lag_x[ 4]=-1.1527623040694213e-02 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]= 2.1981572193208176e-04 curr_grad_lag_s[ 2]=-5.1262076991120953e-04 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 3.2043419447663063e-02 delta[ 0][ 2]=-3.4467436442663868e-02 delta[ 0][ 3]= 8.5009307475794604e-03 delta[ 0][ 4]=-6.0769137525786519e-03 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-5.4324794480246956e-02 delta[ 1][ 2]=-3.2857435929513734e-02 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]=-1.7717710171044523e-02 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-5.6281609700726716e-03 delta[ 3][ 2]= 1.3124229943606394e-02 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-5.2041341128007255e-02 delta[ 4][ 2]=-1.4372642141797438e-02 delta[ 4][ 3]=-6.9486863838561341e-02 delta[ 4][ 4]=-2.9594458223918602e-01 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 5.6279624743139035e-03 delta[ 6][ 2]=-1.3124428439365163e-02 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 5: (scaled) (unscaled) Objective...............: 2.9895751787428928e+01 2.9895751787428928e+01 Dual infeasibility......: 1.1527623040694213e-02 1.1527623040694213e-02 Constraint violation....: 1.8145491853971407e-04 1.8145491853971407e-04 Complementarity.........: 2.6652207192442508e-03 2.6652207192442508e-03 Overall NLP error.......: 1.1527623040694213e-02 1.1527623040694213e-02 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]=-2.2204460492503131e-16 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.0999818335081461e+01 curr_d[ 2]= 5.0012324524558895e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-1.8956964213145966e-04 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1799137871942603e+01 (0) jac_d[ 1, 2]= 1.1899351785272968e+01 (1) jac_d[ 1, 3]= 3.4556040474072297e+01 (2) jac_d[ 1, 4]= 5.2063254948994434e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2305961857978347e-01 (0) W[ 2, 1]=-2.2336062622907020e-05 (1) W[ 3, 1]=-2.4961101138400885e-01 (2) W[ 4, 1]=-1.2661541401533223e-03 (3) W[ 2, 2]= 8.8201245092131841e-02 (4) W[ 3, 2]=-8.0553529514875973e-04 (5) W[ 4, 2]=-4.0860851584112924e-06 (6) W[ 3, 3]= 5.1440221112556239e-01 (7) W[ 4, 3]=-4.5663009914120992e-02 (8) W[ 4, 4]= 2.8758319842751195e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 5: ************************************************** Optimality Error for Barrier Sub-problem = 1.152762e-02 Barrier Parameter: 1.504241e-04 ************************************************** *** Solving the Primal Dual System for Iteration 5: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-2.2972297815884190e-03 RHS[ 0][ 0][ 2]= 1.8379418202100237e-01 RHS[ 0][ 0][ 3]=-1.5913377112414839e-03 RHS[ 0][ 0][ 4]= 3.6565316668168389e-02 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]=-1.8127606721960777e+01 RHS[ 0][ 1][ 2]= 4.6071827400093096e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]=-2.2204460492503131e-16 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-1.8956964213145966e-04 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2305961857978347e-01 (0) Term: 0[ 2, 1]=-2.2336062622907020e-05 (1) Term: 0[ 3, 1]=-2.4961101138400885e-01 (2) Term: 0[ 4, 1]=-1.2661541401533223e-03 (3) Term: 0[ 2, 2]= 8.8201245092131841e-02 (4) Term: 0[ 3, 2]=-8.0553529514875973e-04 (5) Term: 0[ 4, 2]=-4.0860851584112924e-06 (6) Term: 0[ 3, 3]= 5.1440221112556239e-01 (7) Term: 0[ 4, 3]=-4.5663009914120992e-02 (8) Term: 0[ 4, 4]= 2.8758319842751195e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.1798860169361140e-05 Term: 1[ 2]= 7.7832242927359644e+01 Term: 1[ 3]= 5.7654468905306722e-03 Term: 1[ 4]= 9.7474288749918392e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 5.0446251375220381e+04 KKT[1][1][ 2]= 4.7324743074787881e+02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1799137871942603e+01 (0) KKT[3][0][ 1, 2]= 1.1899351785272968e+01 (1) KKT[3][0][ 1, 3]= 3.4556040474072297e+01 (2) KKT[3][0][ 1, 4]= 5.2063254948994434e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.230596185797835e-01 (1) KKT[2][1] = -2.233606262290702e-05 (2) KKT[3][1] = -2.496110113840088e-01 (3) KKT[4][1] = -1.266154140153322e-03 (4) KKT[2][2] = 8.820124509213184e-02 (5) KKT[3][2] = -8.055352951487597e-04 (6) KKT[4][2] = -4.086085158411292e-06 (7) KKT[3][3] = 5.144022111255624e-01 (8) KKT[4][3] = -4.566300991412099e-02 (9) KKT[4][4] = 2.875831984275120e-01 (10) KKT[1][1] = 1.179886016936114e-05 (11) KKT[2][2] = 7.783224292735964e+01 (12) KKT[3][3] = 5.765446890530672e-03 (13) KKT[4][4] = 9.747428874991839e-01 (14) KKT[5][5] = 5.044625137522038e+04 (15) KKT[6][6] = 4.732474307478788e+02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.179913787194260e+01 (22) KKT[8][2] = 1.189935178527297e+01 (23) KKT[8][3] = 3.455604047407230e+01 (24) KKT[8][4] = 5.206325494899443e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -2.2972297815884190e-03 Trhs[ 0, 1] = 1.8379418202100237e-01 Trhs[ 0, 2] = -1.5913377112414839e-03 Trhs[ 0, 3] = 3.6565316668168389e-02 Trhs[ 0, 4] = -1.8127606721960777e+01 Trhs[ 0, 5] = 4.6071827400093096e-01 Trhs[ 0, 6] = -2.2204460492503131e-16 Trhs[ 0, 7] = -1.8956964213145966e-04 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -2.1255445952216229e-03 Tsol[ 0, 1] = 2.4814919672612483e-03 Tsol[ 0, 2] = -7.7307156770854441e-04 Tsol[ 0, 3] = 4.1712419566869685e-04 Tsol[ 0, 4] = -3.5932725767761655e-04 Tsol[ 0, 5] = 9.6876950045772492e-04 Tsol[ 0, 6] = -7.5948275300315969e-03 Tsol[ 0, 7] = 8.9355518714384630e-04 Tsol[ 0, 8] = -2.2505969224066447e-03 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-2.1255445952216229e-03 SOL[ 0][ 0][ 2]= 2.4814919672612483e-03 SOL[ 0][ 0][ 3]=-7.7307156770854441e-04 SOL[ 0][ 0][ 4]= 4.1712419566869685e-04 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]=-3.5932725767761655e-04 SOL[ 0][ 1][ 2]= 9.6876950045772492e-04 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-7.5948275300315969e-03 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 8.9355518714384630e-04 SOL[ 0][ 3][ 2]=-2.2505969224066447e-03 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.2438314267448902e-12 resid[ 0][ 2]= 2.5621722625490673e-12 resid[ 0][ 3]=-1.1089062394026294e-11 resid[ 0][ 4]=-2.2635919180724606e-11 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 4.9656459499836103e-17 resid[ 1][ 2]= 2.0383000842727483e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-1.6263032587282567e-19 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.8431436932253575e-18 resid[ 3][ 2]=-3.9031278209478160e-18 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 4.2351647362715017e-22 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 2.263592e-11 max-norm resid_s 4.965646e-17 max-norm resid_c 1.626303e-19 max-norm resid_d 3.903128e-18 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 4.235165e-22 max-norm resid_vU 0.000000e+00 nrm_rhs = 1.15e-02 nrm_sol = 4.77e-02 nrm_resid = 2.26e-11 residual_ratio = 3.822733e-10 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-1.2438314267448902e-12 RHS[ 0][ 0][ 2]= 2.5621722625490673e-12 RHS[ 0][ 0][ 3]=-1.1089062394026294e-11 RHS[ 0][ 0][ 4]=-2.2635919180724606e-11 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.9656459499836103e-17 RHS[ 0][ 1][ 2]= 2.0726624071714549e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]=-1.6263032587282567e-19 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-1.8431436932253575e-18 RHS[ 0][ 3][ 2]=-3.9031278209478160e-18 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2305961857978347e-01 (0) Term: 0[ 2, 1]=-2.2336062622907020e-05 (1) Term: 0[ 3, 1]=-2.4961101138400885e-01 (2) Term: 0[ 4, 1]=-1.2661541401533223e-03 (3) Term: 0[ 2, 2]= 8.8201245092131841e-02 (4) Term: 0[ 3, 2]=-8.0553529514875973e-04 (5) Term: 0[ 4, 2]=-4.0860851584112924e-06 (6) Term: 0[ 3, 3]= 5.1440221112556239e-01 (7) Term: 0[ 4, 3]=-4.5663009914120992e-02 (8) Term: 0[ 4, 4]= 2.8758319842751195e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 1.1798860169361140e-05 Term: 1[ 2]= 7.7832242927359644e+01 Term: 1[ 3]= 5.7654468905306722e-03 Term: 1[ 4]= 9.7474288749918392e-01 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 5.0446251375220381e+04 KKT[1][1][ 2]= 4.7324743074787881e+02 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1799137871942603e+01 (0) KKT[3][0][ 1, 2]= 1.1899351785272968e+01 (1) KKT[3][0][ 1, 3]= 3.4556040474072297e+01 (2) KKT[3][0][ 1, 4]= 5.2063254948994434e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.230596185797835e-01 (1) KKT[2][1] = -2.233606262290702e-05 (2) KKT[3][1] = -2.496110113840088e-01 (3) KKT[4][1] = -1.266154140153322e-03 (4) KKT[2][2] = 8.820124509213184e-02 (5) KKT[3][2] = -8.055352951487597e-04 (6) KKT[4][2] = -4.086085158411292e-06 (7) KKT[3][3] = 5.144022111255624e-01 (8) KKT[4][3] = -4.566300991412099e-02 (9) KKT[4][4] = 2.875831984275120e-01 (10) KKT[1][1] = 1.179886016936114e-05 (11) KKT[2][2] = 7.783224292735964e+01 (12) KKT[3][3] = 5.765446890530672e-03 (13) KKT[4][4] = 9.747428874991839e-01 (14) KKT[5][5] = 5.044625137522038e+04 (15) KKT[6][6] = 4.732474307478788e+02 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.179913787194260e+01 (22) KKT[8][2] = 1.189935178527297e+01 (23) KKT[8][3] = 3.455604047407230e+01 (24) KKT[8][4] = 5.206325494899443e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -1.2438314267448902e-12 Trhs[ 0, 1] = 2.5621722625490673e-12 Trhs[ 0, 2] = -1.1089062394026294e-11 Trhs[ 0, 3] = -2.2635919180724606e-11 Trhs[ 0, 4] = 4.9656459499836103e-17 Trhs[ 0, 5] = 2.0726624071714549e-17 Trhs[ 0, 6] = -1.6263032587282567e-19 Trhs[ 0, 7] = -1.8431436932253575e-18 Trhs[ 0, 8] = -3.9031278209478160e-18 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -3.3230233613782501e-14 Tsol[ 0, 1] = 3.9336204759227877e-14 Tsol[ 0, 2] = -1.3817486972155573e-14 Tsol[ 0, 3] = 7.7113531963839977e-15 Tsol[ 0, 4] = -1.0418049298259935e-17 Tsol[ 0, 5] = 5.0776623216616920e-16 Tsol[ 0, 6] = 4.4058206416384588e-12 Tsol[ 0, 7] = -5.2560119019895885e-13 Tsol[ 0, 8] = 2.4027833816909876e-13 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-3.3230233613782501e-14 SOL[ 0][ 0][ 2]= 3.9336204759227877e-14 SOL[ 0][ 0][ 3]=-1.3817486972155573e-14 SOL[ 0][ 0][ 4]= 7.7113531963839977e-15 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]=-1.0418049298259935e-17 SOL[ 0][ 1][ 2]= 5.0776623216616920e-16 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]= 4.4058206416384588e-12 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]=-5.2560119019895885e-13 SOL[ 0][ 3][ 2]= 2.4027833816909876e-13 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 4.3368086899420177e-19 resid[ 0][ 2]=-4.3368086899420177e-19 resid[ 0][ 3]=-2.6020852139652106e-18 resid[ 0][ 4]= 8.6736173798840355e-18 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 2.1684043449710089e-19 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 5.0957502106818708e-18 resid[ 3][ 2]=-7.5894152073985310e-19 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]=-2.3716922523120409e-20 resid[ 4][ 3]= 5.4210108624275222e-20 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-9.2131376626156222e-21 resid[ 6][ 2]=-3.5151867311053464e-20 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 8.673617e-18 max-norm resid_s 0.000000e+00 max-norm resid_c 2.168404e-19 max-norm resid_d 5.095750e-18 max-norm resid_zL 5.421011e-20 max-norm resid_zU 0.000000e+00 max-norm resid_vL 3.515187e-20 max-norm resid_vU 0.000000e+00 nrm_rhs = 1.15e-02 nrm_sol = 4.77e-02 nrm_resid = 8.67e-18 residual_ratio = 1.464792e-16 *** Step Calculated for Iteration: 5 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 2.1255445951883925e-03 delta[ 0][ 2]=-2.4814919672219121e-03 delta[ 0][ 3]= 7.7307156769472691e-04 delta[ 0][ 4]=-4.1712419566098551e-04 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]= 3.5932725767760614e-04 delta[ 1][ 2]=-9.6876950045721719e-04 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 7.5948275344374172e-03 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-8.9355518766944745e-04 delta[ 3][ 2]= 2.2505969226469229e-03 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 2.3017095364300238e-04 delta[ 4][ 2]= 8.8303065415404527e-03 delta[ 4][ 3]=-1.3194774873050330e-03 delta[ 4][ 4]=-4.7686349361697002e-02 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 1.1133724138427665e-03 delta[ 6][ 2]=-2.7632161883168953e-03 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 5: ************************************************** --> Starting line search in iteration 5 <-- Acceptable Check: overall_error = 1.1527623040694213e-02 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 1.1527623040694213e-02 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 1.8145491853971407e-04 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.6652207192442508e-03 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9895751787428928e+01 last_obj_val = 2.9945312615447051e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.6577883162303742e-03 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 5 The current filter has 0 entries. Relative step size for delta_x = 2.474045e-03 minimal step size ALPHA_MIN = 1.287858E-11 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 2.9899062868183606e+01 (reference 2.9900084025862331e+01): New values of constraint violation = 8.1739483115406131e-07 (reference 1.8956964213168170e-04): reference_theta = 1.895696e-04 reference_gradBarrTDelta = -7.359879e-03 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 1.895696e-04 reference_gradBarrTDelta = -7.359879e-03 Convergence Check: overall_error = 1.7031525384496231e-04 IpData().tol() = 2.4999999999999999e-08 dual_inf = 9.7945439498812667e-07 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 2.2204460492503131e-16 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 1.7031525384496231e-04 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 6 Acceptable Check: overall_error = 1.7031525384496231e-04 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 9.7945439498812667e-07 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 2.2204460492503131e-16 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 1.7031525384496231e-04 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9894810258333443e+01 last_obj_val = 2.9895751787428928e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 3.1494733947086321e-05 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 6 ************************************************** *** Update HessianMatrix for Iteration 6: ************************************************** ************************************************** *** Summary of Iteration: 6: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 6 2.9894810e+01 2.22e-16 9.79e-07 -3.8 2.48e-03 - 1.00e+00 1.00e+00h 1 ************************************************** *** Beginning Iteration 6 from the following point: ************************************************** Current barrier parameter mu = 1.5042412372345582e-04 Current fraction-to-the-boundary parameter tau = 9.9984957587627654e-01 ||curr_x||_inf = 6.3505357995337874e-01 ||curr_s||_inf = 2.1000367231981269e+01 ||curr_y_c||_inf = 1.8371445066100943e+01 ||curr_y_d||_inf = 5.8051540294747528e-01 ||curr_z_L||_inf = 2.4311320389281488e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.8051540445171657e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 2.4814919672219121e-03 ||delta_s||_inf = 9.6876950045721719e-04 ||delta_y_c||_inf = 7.5948275344374172e-03 ||delta_y_d||_inf = 2.2505969226469229e-03 ||delta_z_L||_inf = 4.7686349361697002e-02 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 2.7632161883168953e-03 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.3505357995337874e-01 curr_x[ 2]= 5.2859884112726021e-04 curr_x[ 3]= 3.1254460489644964e-01 curr_x[ 4]= 5.1873216309044554e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1000367231981269e+01 curr_s[ 2]= 5.0002636829554321e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8371445066100943e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.1047075705923064e-01 curr_y_d[ 2]=-5.8051540294747528e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.3505358995337879e-01 curr_slack_x_L[ 2]= 5.2860884112726025e-04 curr_slack_x_L[ 3]= 3.1254461489644964e-01 curr_slack_x_L[ 4]= 5.1873226309044555e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 2.3763878314745073e-04 curr_z_L[ 2]= 2.4311320389281488e-01 curr_z_L[ 3]= 4.7802478773568578e-04 curr_z_L[ 4]= 3.2832978776040841e-03 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 3.6744198126825722e-04 curr_slack_s_L[ 2]= 2.6373295543180575e-04 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.1047075856347187e-01 curr_v_L[ 2]= 5.8051540445171657e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-5.2847926842948707e-08 curr_grad_lag_x[ 2]= 7.1983773497485970e-08 curr_grad_lag_x[ 3]=-9.7945439498812667e-07 curr_grad_lag_x[ 4]= 4.6278725719661740e-08 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-1.5042412315757758e-09 curr_grad_lag_s[ 2]=-1.5042412870869271e-09 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 2.1255445951883925e-03 delta[ 0][ 2]=-2.4814919672219121e-03 delta[ 0][ 3]= 7.7307156769472691e-04 delta[ 0][ 4]=-4.1712419566098551e-04 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]= 3.5932725767760614e-04 delta[ 1][ 2]=-9.6876950045721719e-04 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 7.5948275344374172e-03 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-8.9355518766944745e-04 delta[ 3][ 2]= 2.2505969226469229e-03 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]= 2.3017095364300238e-04 delta[ 4][ 2]= 8.8303065415404527e-03 delta[ 4][ 3]=-1.3194774873050330e-03 delta[ 4][ 4]=-4.7686349361697002e-02 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 1.1133724138427665e-03 delta[ 6][ 2]=-2.7632161883168953e-03 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 6: (scaled) (unscaled) Objective...............: 2.9894810258333443e+01 2.9894810258333443e+01 Dual infeasibility......: 9.7945439498812667e-07 9.7945439498812667e-07 Constraint violation....: 2.2204460492503131e-16 2.2204460492503131e-16 Complementarity.........: 1.7031525384496231e-04 1.7031525384496231e-04 Overall NLP error.......: 1.7031525384496231e-04 1.7031525384496231e-04 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 2.2204460492503131e-16 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.1000366414586438e+01 curr_d[ 2]= 5.0002636829554321e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-8.1739483093201670e-07 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1798969446405131e+01 (0) jac_d[ 1, 2]= 1.1899886453572059e+01 (1) jac_d[ 1, 3]= 3.4556315332841002e+01 (2) jac_d[ 1, 4]= 5.2063639609842539e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2300676684148726e-01 (0) W[ 2, 1]=-3.9145300507455134e-06 (1) W[ 3, 1]=-2.4972711005946316e-01 (2) W[ 4, 1]=-1.2535298776635657e-03 (3) W[ 2, 2]= 8.8171754162195790e-02 (4) W[ 3, 2]=-1.4105130190738481e-04 (5) W[ 4, 2]=-7.0802093205719468e-07 (6) W[ 3, 3]= 5.1491269957174157e-01 (7) W[ 4, 3]=-4.5168134854547168e-02 (8) W[ 4, 4]= 2.8749163699092972e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 6: ************************************************** Optimality Error for Barrier Sub-problem = 2.191233e-05 sub_problem_error < kappa_eps * mu (1.504241e-03) Updating mu= 1.5042412372345582e-04 and tau= 9.9984957587627654e-01 to new_mu= 1.8449144625279508e-06 and new_tau= 9.9999815508553747e-01 Barrier Parameter: 1.844914e-06 ************************************************** *** Solving the Primal Dual System for Iteration 6: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 2.3468082173803092e-04 RHS[ 0][ 0][ 2]= 2.3962314421545067e-01 RHS[ 0][ 0][ 3]= 4.7114246825067394e-04 RHS[ 0][ 0][ 4]= 3.2477783425799533e-03 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.0544978898862233e-01 RHS[ 0][ 1][ 2]= 5.7352001454543933e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 2.2204460492503131e-16 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-8.1739483093201670e-07 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2300676684148726e-01 (0) Term: 0[ 2, 1]=-3.9145300507455134e-06 (1) Term: 0[ 3, 1]=-2.4972711005946316e-01 (2) Term: 0[ 4, 1]=-1.2535298776635657e-03 (3) Term: 0[ 2, 2]= 8.8171754162195790e-02 (4) Term: 0[ 3, 2]=-1.4105130190738481e-04 (5) Term: 0[ 4, 2]=-7.0802093205719468e-07 (6) Term: 0[ 3, 3]= 5.1491269957174157e-01 (7) Term: 0[ 4, 3]=-4.5168134854547168e-02 (8) Term: 0[ 4, 4]= 2.8749163699092972e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 3.7420272384397751e-04 Term: 1[ 2]= 4.5991134649654191e+02 Term: 1[ 3]= 1.5294609631782074e-03 Term: 1[ 4]= 6.3294653354376229e-02 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 1.1171035959111073e+03 KKT[1][1][ 2]= 2.2011485197261295e+03 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1798969446405131e+01 (0) KKT[3][0][ 1, 2]= 1.1899886453572059e+01 (1) KKT[3][0][ 1, 3]= 3.4556315332841002e+01 (2) KKT[3][0][ 1, 4]= 5.2063639609842539e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.230067668414873e-01 (1) KKT[2][1] = -3.914530050745513e-06 (2) KKT[3][1] = -2.497271100594632e-01 (3) KKT[4][1] = -1.253529877663566e-03 (4) KKT[2][2] = 8.817175416219579e-02 (5) KKT[3][2] = -1.410513019073848e-04 (6) KKT[4][2] = -7.080209320571947e-07 (7) KKT[3][3] = 5.149126995717416e-01 (8) KKT[4][3] = -4.516813485454717e-02 (9) KKT[4][4] = 2.874916369909297e-01 (10) KKT[1][1] = 3.742027238439775e-04 (11) KKT[2][2] = 4.599113464965419e+02 (12) KKT[3][3] = 1.529460963178207e-03 (13) KKT[4][4] = 6.329465335437623e-02 (14) KKT[5][5] = 1.117103595911107e+03 (15) KKT[6][6] = 2.201148519726130e+03 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.179896944640513e+01 (22) KKT[8][2] = 1.189988645357206e+01 (23) KKT[8][3] = 3.455631533284100e+01 (24) KKT[8][4] = 5.206363960984254e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 2.3468082173803092e-04 Trhs[ 0, 1] = 2.3962314421545067e-01 Trhs[ 0, 2] = 4.7114246825067394e-04 Trhs[ 0, 3] = 3.2477783425799533e-03 Trhs[ 0, 4] = 4.0544978898862233e-01 Trhs[ 0, 5] = 5.7352001454543933e-01 Trhs[ 0, 6] = 2.2204460492503131e-16 Trhs[ 0, 7] = -8.1739483093201670e-07 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -4.6173068622006925e-04 Tsol[ 0, 1] = 5.2149040427637355e-04 Tsol[ 0, 2] = -1.5512194474607771e-04 Tsol[ 0, 3] = 9.5362226689995401e-05 Tsol[ 0, 4] = 3.6300949825992341e-04 Tsol[ 0, 5] = 2.6048299365706351e-04 Tsol[ 0, 6] = -2.0213758047147895e-04 Tsol[ 0, 7] = 6.9426867424948746e-05 Tsol[ 0, 8] = -1.5825864336319051e-04 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-4.6173068622006925e-04 SOL[ 0][ 0][ 2]= 5.2149040427637355e-04 SOL[ 0][ 0][ 3]=-1.5512194474607771e-04 SOL[ 0][ 0][ 4]= 9.5362226689995401e-05 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 3.6300949825992341e-04 SOL[ 0][ 1][ 2]= 2.6048299365706351e-04 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-2.0213758047147895e-04 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 6.9426867424948746e-05 SOL[ 0][ 3][ 2]=-1.5825864336319051e-04 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-4.1293618574474119e-15 resid[ 0][ 2]= 1.7285745236760202e-14 resid[ 0][ 3]= 4.3157031699952823e-14 resid[ 0][ 4]= 7.2598541687179251e-14 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 2.7579392762600019e-17 resid[ 1][ 2]=-4.1172577500137031e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-5.4210108624275222e-20 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.3010426069826053e-18 resid[ 3][ 2]= 5.9631119486702744e-19 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 7.259854e-14 max-norm resid_s 4.117258e-17 max-norm resid_c 5.421011e-20 max-norm resid_d 1.301043e-18 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 1.68e-04 nrm_sol = 3.24e-03 nrm_resid = 7.26e-14 residual_ratio = 2.128886e-11 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-4.1293618574474119e-15 RHS[ 0][ 0][ 2]= 1.7285745236760202e-14 RHS[ 0][ 0][ 3]= 4.3157031699952823e-14 RHS[ 0][ 0][ 4]= 7.2598541687179251e-14 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 2.7579392762600019e-17 RHS[ 0][ 1][ 2]=-4.1172577500137031e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]=-5.4210108624275222e-20 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-1.3010426069826053e-18 RHS[ 0][ 3][ 2]= 5.9631119486702744e-19 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2300676684148726e-01 (0) Term: 0[ 2, 1]=-3.9145300507455134e-06 (1) Term: 0[ 3, 1]=-2.4972711005946316e-01 (2) Term: 0[ 4, 1]=-1.2535298776635657e-03 (3) Term: 0[ 2, 2]= 8.8171754162195790e-02 (4) Term: 0[ 3, 2]=-1.4105130190738481e-04 (5) Term: 0[ 4, 2]=-7.0802093205719468e-07 (6) Term: 0[ 3, 3]= 5.1491269957174157e-01 (7) Term: 0[ 4, 3]=-4.5168134854547168e-02 (8) Term: 0[ 4, 4]= 2.8749163699092972e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 3.7420272384397751e-04 Term: 1[ 2]= 4.5991134649654191e+02 Term: 1[ 3]= 1.5294609631782074e-03 Term: 1[ 4]= 6.3294653354376229e-02 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 1.1171035959111073e+03 KKT[1][1][ 2]= 2.2011485197261295e+03 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1798969446405131e+01 (0) KKT[3][0][ 1, 2]= 1.1899886453572059e+01 (1) KKT[3][0][ 1, 3]= 3.4556315332841002e+01 (2) KKT[3][0][ 1, 4]= 5.2063639609842539e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.230067668414873e-01 (1) KKT[2][1] = -3.914530050745513e-06 (2) KKT[3][1] = -2.497271100594632e-01 (3) KKT[4][1] = -1.253529877663566e-03 (4) KKT[2][2] = 8.817175416219579e-02 (5) KKT[3][2] = -1.410513019073848e-04 (6) KKT[4][2] = -7.080209320571947e-07 (7) KKT[3][3] = 5.149126995717416e-01 (8) KKT[4][3] = -4.516813485454717e-02 (9) KKT[4][4] = 2.874916369909297e-01 (10) KKT[1][1] = 3.742027238439775e-04 (11) KKT[2][2] = 4.599113464965419e+02 (12) KKT[3][3] = 1.529460963178207e-03 (13) KKT[4][4] = 6.329465335437623e-02 (14) KKT[5][5] = 1.117103595911107e+03 (15) KKT[6][6] = 2.201148519726130e+03 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.179896944640513e+01 (22) KKT[8][2] = 1.189988645357206e+01 (23) KKT[8][3] = 3.455631533284100e+01 (24) KKT[8][4] = 5.206363960984254e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -4.1293618574474119e-15 Trhs[ 0, 1] = 1.7285745236760202e-14 Trhs[ 0, 2] = 4.3157031699952823e-14 Trhs[ 0, 3] = 7.2598541687179251e-14 Trhs[ 0, 4] = 2.7579392762600019e-17 Trhs[ 0, 5] = -4.1172577500137031e-17 Trhs[ 0, 6] = -5.4210108624275222e-20 Trhs[ 0, 7] = -1.3010426069826053e-18 Trhs[ 0, 8] = 5.9631119486702744e-19 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -3.6531729862507271e-17 Tsol[ 0, 1] = 4.3129064106996297e-17 Tsol[ 0, 2] = -1.5110709545402567e-17 Tsol[ 0, 3] = 8.4591651922961676e-18 Tsol[ 0, 4] = 1.7397278749499479e-18 Tsol[ 0, 5] = 1.7150791658041799e-19 Tsol[ 0, 6] = -2.7696970037805652e-14 Tsol[ 0, 7] = 1.9158768722507760e-15 Tsol[ 0, 8] = 4.1868697420243664e-16 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-3.6531729862507271e-17 SOL[ 0][ 0][ 2]= 4.3129064106996297e-17 SOL[ 0][ 0][ 3]=-1.5110709545402567e-17 SOL[ 0][ 0][ 4]= 8.4591651922961676e-18 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 1.7397278749499479e-18 SOL[ 0][ 1][ 2]= 1.7150791658041799e-19 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-2.7696970037805652e-14 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 1.9158768722507760e-15 SOL[ 0][ 3][ 2]= 4.1868697420243664e-16 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]= 6.6061952440935002e-20 resid[ 0][ 2]=-6.9469936564653476e-20 resid[ 0][ 3]=-6.9456701674852628e-20 resid[ 0][ 4]= 3.6421754987444872e-19 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-2.7105054312137611e-20 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.3010426069826053e-18 resid[ 3][ 2]=-3.2526065174565133e-19 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]=-2.7105054312137611e-20 resid[ 4][ 2]=-4.4204531934833799e-21 resid[ 4][ 3]= 2.7105054312137611e-20 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-1.7728134888236489e-20 resid[ 6][ 2]= 1.8244295590469578e-20 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 3.642175e-19 max-norm resid_s 0.000000e+00 max-norm resid_c 2.710505e-20 max-norm resid_d 1.301043e-18 max-norm resid_zL 2.710505e-20 max-norm resid_zU 0.000000e+00 max-norm resid_vL 1.824430e-20 max-norm resid_vU 0.000000e+00 nrm_rhs = 1.68e-04 nrm_sol = 3.24e-03 nrm_resid = 1.30e-18 residual_ratio = 3.815188e-16 *** Step Calculated for Iteration: 6 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 4.6173068622003271e-04 delta[ 0][ 2]=-5.2149040427633040e-04 delta[ 0][ 3]= 1.5512194474606261e-04 delta[ 0][ 4]=-9.5362226689986945e-05 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-3.6300949825992168e-04 delta[ 1][ 2]=-2.6048299365706335e-04 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 2.0213758044378198e-04 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-6.9426867423032866e-05 delta[ 3][ 2]= 1.5825864336360920e-04 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-2.3490643209619506e-04 delta[ 4][ 2]= 2.1628180252509198e-04 delta[ 4][ 3]=-4.7235915715553890e-04 delta[ 4][ 4]=-3.2416961263236452e-03 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 6.9425381630945914e-05 delta[ 6][ 2]=-1.5826012915575165e-04 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 6: ************************************************** --> Starting line search in iteration 6 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 1.7031525384496231e-04 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 9.7945439498812667e-07 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 2.2204460492503131e-16 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 1.7031525384496231e-04 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9894810258333443e+01 last_obj_val = 2.9895751787428928e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 3.1494733947086321e-05 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 6 The current filter has 0 entries. Relative step size for delta_x = 5.212149e-04 minimal step size ALPHA_MIN = 9.700214E-13 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 2.9894459830341511e+01 (reference 2.9894862415535506e+01): New values of constraint violation = 3.7627721383159951e-08 (reference 8.1739483115406131e-07): reference_theta = 8.173948e-07 reference_gradBarrTDelta = -4.213283e-04 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 8.173948e-07 reference_gradBarrTDelta = -4.213283e-04 Convergence Check: overall_error = 2.1540498233864880e-06 IpData().tol() = 2.4999999999999999e-08 dual_inf = 3.6266241913631564e-08 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 0.0000000000000000e+00 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.1540498233864880e-06 compl_inf_tol_ = 1.0000000000000000e-04 obj val update iter = 7 Acceptable Check: overall_error = 2.1540498233864880e-06 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 3.6266241913631564e-08 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.1540498233864880e-06 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9894383464029904e+01 last_obj_val = 2.9894810258333443e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.4276738774457737e-05 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 7 ************************************************** *** Update HessianMatrix for Iteration 7: ************************************************** ************************************************** *** Summary of Iteration: 7: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 7 2.9894383e+01 0.00e+00 3.63e-08 -5.7 5.21e-04 - 1.00e+00 1.00e+00h 1 A ************************************************** *** Beginning Iteration 7 from the following point: ************************************************** Current barrier parameter mu = 1.8449144625279508e-06 Current fraction-to-the-boundary parameter tau = 9.9999815508553747e-01 ||curr_x||_inf = 6.3551531063959876e-01 ||curr_s||_inf = 2.1000004222483010e+01 ||curr_y_c||_inf = 1.8371242928520498e+01 ||curr_y_d||_inf = 5.8035714430411167e-01 ||curr_z_L||_inf = 2.4332948569533996e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.8035714432256080e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 5.2149040427633040e-04 ||delta_s||_inf = 3.6300949825992168e-04 ||delta_y_c||_inf = 2.0213758044378198e-04 ||delta_y_d||_inf = 1.5825864336360920e-04 ||delta_z_L||_inf = 3.2416961263236452e-03 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 1.5826012915575165e-04 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.3551531063959876e-01 curr_x[ 2]= 7.1084368509298067e-06 curr_x[ 3]= 3.1269972684119568e-01 curr_x[ 4]= 5.1777854082354566e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.1000004222483010e+01 curr_s[ 2]= 5.0000031999617747e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8371242928520498e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.1054018392665365e-01 curr_y_d[ 2]=-5.8035714430411167e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.3551532063959881e-01 curr_slack_x_L[ 2]= 7.1184368509298067e-06 curr_slack_x_L[ 3]= 3.1269973684119567e-01 curr_slack_x_L[ 4]= 5.1777864082354567e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 2.7323510512556649e-06 curr_z_L[ 2]= 2.4332948569533996e-01 curr_z_L[ 3]= 5.6656305801468763e-06 curr_z_L[ 4]= 4.1601751280438953e-05 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 4.4324830099640167e-06 curr_slack_s_L[ 2]= 3.2499617743653175e-06 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.1054018394510283e-01 curr_v_L[ 2]= 5.8035714432256080e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-7.4502058478910244e-09 curr_grad_lag_x[ 2]= 1.5505805639470793e-08 curr_grad_lag_x[ 3]=-3.6266241913631564e-08 curr_grad_lag_x[ 4]= 1.1558658797889559e-08 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-1.8449186622859770e-11 curr_grad_lag_s[ 2]=-1.8449131111708539e-11 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 4.6173068622003271e-04 delta[ 0][ 2]=-5.2149040427633040e-04 delta[ 0][ 3]= 1.5512194474606261e-04 delta[ 0][ 4]=-9.5362226689986945e-05 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-3.6300949825992168e-04 delta[ 1][ 2]=-2.6048299365706335e-04 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 2.0213758044378198e-04 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-6.9426867423032866e-05 delta[ 3][ 2]= 1.5825864336360920e-04 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-2.3490643209619506e-04 delta[ 4][ 2]= 2.1628180252509198e-04 delta[ 4][ 3]=-4.7235915715553890e-04 delta[ 4][ 4]=-3.2416961263236452e-03 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 6.9425381630945914e-05 delta[ 6][ 2]=-1.5826012915575165e-04 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 7: (scaled) (unscaled) Objective...............: 2.9894383464029904e+01 2.9894383464029904e+01 Dual infeasibility......: 3.6266241913631564e-08 3.6266241913631564e-08 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.1540498233864880e-06 2.1540498233864880e-06 Overall NLP error.......: 2.1540498233864880e-06 2.1540498233864880e-06 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]= 0.0000000000000000e+00 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.1000004184855289e+01 curr_d[ 2]= 5.0000031999617747e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-3.7627721383159951e-08 curr_d - curr_s[ 2]= 0.0000000000000000e+00 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1798925182789434e+01 (0) jac_d[ 1, 2]= 1.1899998473835513e+01 (1) jac_d[ 1, 3]= 3.4556391056896160e+01 (2) jac_d[ 1, 4]= 5.2063724837208390e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2296220471794007e-01 (0) W[ 2, 1]=-5.2608573728596901e-08 (1) W[ 3, 1]=-2.4969519213810942e-01 (2) W[ 4, 1]=-1.2504448837915186e-03 (3) W[ 2, 2]= 8.8142001240504808e-02 (4) W[ 3, 2]=-1.8951947361231929e-06 (5) W[ 4, 2]=-9.4909178718310217e-09 (6) W[ 3, 3]= 5.1492700270553149e-01 (7) W[ 4, 3]=-4.5046584493996081e-02 (8) W[ 4, 4]= 2.8739567907856894e-01 (9) ************************************************** *** Update Barrier Parameter for Iteration 7: ************************************************** Optimality Error for Barrier Sub-problem = 3.091354e-07 sub_problem_error < kappa_eps * mu (1.844914e-05) Updating mu= 1.8449144625279508e-06 and tau= 9.9999815508553747e-01 to new_mu= 2.5059035596800618e-09 and new_tau= 9.9999999749409640e-01 Barrier Parameter: 2.505904e-09 ************************************************** *** Solving the Primal Dual System for Iteration 7: ************************************************** Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]= 2.7209577655906626e-06 RHS[ 0][ 0][ 2]= 2.4297747116815116e-01 RHS[ 0][ 0][ 3]= 5.6213505939652126e-06 RHS[ 0][ 0][ 4]= 4.1564912765916002e-05 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]= 4.0997483408686047e-01 RHS[ 0][ 1][ 2]= 5.7958608798604538e-01 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]= 0.0000000000000000e+00 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-3.7627721383159951e-08 RHS[ 0][ 3][ 2]= 0.0000000000000000e+00 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2296220471794007e-01 (0) Term: 0[ 2, 1]=-5.2608573728596901e-08 (1) Term: 0[ 3, 1]=-2.4969519213810942e-01 (2) Term: 0[ 4, 1]=-1.2504448837915186e-03 (3) Term: 0[ 2, 2]= 8.8142001240504808e-02 (4) Term: 0[ 3, 2]=-1.8951947361231929e-06 (5) Term: 0[ 4, 2]=-9.4909178718310217e-09 (6) Term: 0[ 3, 3]= 5.1492700270553149e-01 (7) Term: 0[ 4, 3]=-4.5046584493996081e-02 (8) Term: 0[ 4, 4]= 2.8739567907856894e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 4.2994259343830725e-06 Term: 1[ 2]= 3.4182994215022976e+04 Term: 1[ 3]= 1.8118437314273029e-05 Term: 1[ 4]= 8.0346596016919237e-04 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 9.2620813891948943e+04 KKT[1][1][ 2]= 1.7857352935663323e+05 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1798925182789434e+01 (0) KKT[3][0][ 1, 2]= 1.1899998473835513e+01 (1) KKT[3][0][ 1, 3]= 3.4556391056896160e+01 (2) KKT[3][0][ 1, 4]= 5.2063724837208390e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.229622047179401e-01 (1) KKT[2][1] = -5.260857372859690e-08 (2) KKT[3][1] = -2.496951921381094e-01 (3) KKT[4][1] = -1.250444883791519e-03 (4) KKT[2][2] = 8.814200124050481e-02 (5) KKT[3][2] = -1.895194736123193e-06 (6) KKT[4][2] = -9.490917871831022e-09 (7) KKT[3][3] = 5.149270027055315e-01 (8) KKT[4][3] = -4.504658449399608e-02 (9) KKT[4][4] = 2.873956790785689e-01 (10) KKT[1][1] = 4.299425934383072e-06 (11) KKT[2][2] = 3.418299421502298e+04 (12) KKT[3][3] = 1.811843731427303e-05 (13) KKT[4][4] = 8.034659601691924e-04 (14) KKT[5][5] = 9.262081389194894e+04 (15) KKT[6][6] = 1.785735293566332e+05 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.179892518278943e+01 (22) KKT[8][2] = 1.189999847383551e+01 (23) KKT[8][3] = 3.455639105689616e+01 (24) KKT[8][4] = 5.206372483720839e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = 2.7209577655906626e-06 Trhs[ 0, 1] = 2.4297747116815116e-01 Trhs[ 0, 2] = 5.6213505939652126e-06 Trhs[ 0, 3] = 4.1564912765916002e-05 Trhs[ 0, 4] = 4.0997483408686047e-01 Trhs[ 0, 5] = 5.7958608798604538e-01 Trhs[ 0, 6] = 0.0000000000000000e+00 Trhs[ 0, 7] = -3.7627721383159951e-08 Trhs[ 0, 8] = 0.0000000000000000e+00 HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9 Ma97SolverInterface::Factorization: ma97_factor_solve took 0.000 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = -6.2652408419959489e-06 Tsol[ 0, 1] = 7.1082302230646972e-06 Tsol[ 0, 2] = -2.1484200753445985e-06 Tsol[ 0, 3] = 1.3054306942758500e-06 Tsol[ 0, 4] = 4.4263887633871708e-06 Tsol[ 0, 5] = 3.2456323788051813e-06 Tsol[ 0, 6] = -2.8767390142458308e-06 Tsol[ 0, 7] = 8.9578023670933149e-07 Tsol[ 0, 8] = -2.0591086390686630e-06 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]=-6.2652408419959489e-06 SOL[ 0][ 0][ 2]= 7.1082302230646972e-06 SOL[ 0][ 0][ 3]=-2.1484200753445985e-06 SOL[ 0][ 0][ 4]= 1.3054306942758500e-06 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 4.4263887633871708e-06 SOL[ 0][ 1][ 2]= 3.2456323788051813e-06 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-2.8767390142458308e-06 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 8.9578023670933149e-07 SOL[ 0][ 3][ 2]=-2.0591086390686630e-06 Number of trial factorizations performed: 1 Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00 delta_c=0.000000e+00 delta_d=0.000000e+00 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-7.9386849418596565e-17 resid[ 0][ 2]= 3.6293596156285663e-15 resid[ 0][ 3]= 7.3211876179643281e-14 resid[ 0][ 4]= 1.5036136322900679e-14 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]=-7.2953888955828820e-17 resid[ 1][ 2]= 8.5520258003056807e-17 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]=-2.1175823681357508e-22 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]=-1.8634724839594607e-20 resid[ 3][ 2]= 6.7762635780344027e-21 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]= 0.0000000000000000e+00 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]= 0.0000000000000000e+00 resid[ 6][ 2]= 0.0000000000000000e+00 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 7.321188e-14 max-norm resid_s 8.552026e-17 max-norm resid_c 2.117582e-22 max-norm resid_d 1.863472e-20 max-norm resid_zL 0.000000e+00 max-norm resid_zU 0.000000e+00 max-norm resid_vL 0.000000e+00 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.15e-06 nrm_sol = 4.16e-05 nrm_resid = 7.32e-14 residual_ratio = 1.675181e-09 CompoundVector "RHS[ 0]" with 4 components: Component 1: DenseVector "RHS[ 0][ 0]" with 4 elements: RHS[ 0][ 0][ 1]=-7.9386849418596565e-17 RHS[ 0][ 0][ 2]= 3.6293596156285663e-15 RHS[ 0][ 0][ 3]= 7.3211876179643281e-14 RHS[ 0][ 0][ 4]= 1.5036136322900679e-14 Component 2: DenseVector "RHS[ 0][ 1]" with 2 elements: RHS[ 0][ 1][ 1]=-7.2953888955828820e-17 RHS[ 0][ 1][ 2]= 8.5520258003056807e-17 Component 3: DenseVector "RHS[ 0][ 2]" with 1 elements: RHS[ 0][ 2][ 1]=-2.1175823681357508e-22 Component 4: DenseVector "RHS[ 0][ 3]" with 2 elements: RHS[ 0][ 3][ 1]=-1.8634724839594607e-20 RHS[ 0][ 3][ 2]= 6.7762635780344027e-21 CompoundSymMatrix "KKT" with 4 rows and columns components: Component for row 0 and column 0: SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms: Term 0 with factor 1.0000000000000000e+00 and the following matrix: SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements: Term: 0[ 1, 1]= 1.2296220471794007e-01 (0) Term: 0[ 2, 1]=-5.2608573728596901e-08 (1) Term: 0[ 3, 1]=-2.4969519213810942e-01 (2) Term: 0[ 4, 1]=-1.2504448837915186e-03 (3) Term: 0[ 2, 2]= 8.8142001240504808e-02 (4) Term: 0[ 3, 2]=-1.8951947361231929e-06 (5) Term: 0[ 4, 2]=-9.4909178718310217e-09 (6) Term: 0[ 3, 3]= 5.1492700270553149e-01 (7) Term: 0[ 4, 3]=-4.5046584493996081e-02 (8) Term: 0[ 4, 4]= 2.8739567907856894e-01 (9) Term 1 with factor 1.0000000000000000e+00 and the following matrix: DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements: DenseVector "Term: 1" with 4 elements: Term: 1[ 1]= 4.2994259343830725e-06 Term: 1[ 2]= 3.4182994215022976e+04 Term: 1[ 3]= 1.8118437314273029e-05 Term: 1[ 4]= 8.0346596016919237e-04 Component for row 1 and column 0: This component has not been set. Component for row 1 and column 1: DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[1][1]" with 2 elements: KKT[1][1][ 1]= 9.2620813891948943e+04 KKT[1][1][ 2]= 1.7857352935663323e+05 Component for row 2 and column 0: GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements: KKT[2][0][ 1, 1]= 1.0000000000000000e+00 (0) KKT[2][0][ 1, 2]= 1.0000000000000000e+00 (1) KKT[2][0][ 1, 3]= 1.0000000000000000e+00 (2) KKT[2][0][ 1, 4]= 1.0000000000000000e+00 (3) Component for row 2 and column 1: This component has not been set. Component for row 2 and column 2: DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements: DenseVector "KKT[2][2]" with 1 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 Component for row 3 and column 0: GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements: KKT[3][0][ 1, 1]= 1.1798925182789434e+01 (0) KKT[3][0][ 1, 2]= 1.1899998473835513e+01 (1) KKT[3][0][ 1, 3]= 3.4556391056896160e+01 (2) KKT[3][0][ 1, 4]= 5.2063724837208390e+01 (3) KKT[3][0][ 2, 1]= 2.2999999999999998e+00 (4) KKT[3][0][ 2, 2]= 5.5999999999999996e+00 (5) KKT[3][0][ 2, 3]= 1.1100000000000000e+01 (6) KKT[3][0][ 2, 4]= 1.3000000000000000e+00 (7) Component for row 3 and column 1: IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00. Component for row 3 and column 2: This component has not been set. Component for row 3 and column 3: DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements: DenseVector "KKT[3][3]" with 2 elements: Homogeneous vector, all elements have value -0.0000000000000000e+00 ******* KKT SYSTEM ******* (0) KKT[1][1] = 1.229622047179401e-01 (1) KKT[2][1] = -5.260857372859690e-08 (2) KKT[3][1] = -2.496951921381094e-01 (3) KKT[4][1] = -1.250444883791519e-03 (4) KKT[2][2] = 8.814200124050481e-02 (5) KKT[3][2] = -1.895194736123193e-06 (6) KKT[4][2] = -9.490917871831022e-09 (7) KKT[3][3] = 5.149270027055315e-01 (8) KKT[4][3] = -4.504658449399608e-02 (9) KKT[4][4] = 2.873956790785689e-01 (10) KKT[1][1] = 4.299425934383072e-06 (11) KKT[2][2] = 3.418299421502298e+04 (12) KKT[3][3] = 1.811843731427303e-05 (13) KKT[4][4] = 8.034659601691924e-04 (14) KKT[5][5] = 9.262081389194894e+04 (15) KKT[6][6] = 1.785735293566332e+05 (16) KKT[7][1] = 1.000000000000000e+00 (17) KKT[7][2] = 1.000000000000000e+00 (18) KKT[7][3] = 1.000000000000000e+00 (19) KKT[7][4] = 1.000000000000000e+00 (20) KKT[7][7] = -0.000000000000000e+00 (21) KKT[8][1] = 1.179892518278943e+01 (22) KKT[8][2] = 1.189999847383551e+01 (23) KKT[8][3] = 3.455639105689616e+01 (24) KKT[8][4] = 5.206372483720839e+01 (25) KKT[9][1] = 2.300000000000000e+00 (26) KKT[9][2] = 5.600000000000000e+00 (27) KKT[9][3] = 1.110000000000000e+01 (28) KKT[9][4] = 1.300000000000000e+00 (29) KKT[8][5] = -1.000000000000000e+00 (30) KKT[9][6] = -1.000000000000000e+00 (31) KKT[8][8] = -0.000000000000000e+00 (32) KKT[9][9] = -0.000000000000000e+00 Right hand side 0 in TSymLinearSolver: Trhs[ 0, 0] = -7.9386849418596565e-17 Trhs[ 0, 1] = 3.6293596156285663e-15 Trhs[ 0, 2] = 7.3211876179643281e-14 Trhs[ 0, 3] = 1.5036136322900679e-14 Trhs[ 0, 4] = -7.2953888955828820e-17 Trhs[ 0, 5] = 8.5520258003056807e-17 Trhs[ 0, 6] = -2.1175823681357508e-22 Trhs[ 0, 7] = -1.8634724839594607e-20 Trhs[ 0, 8] = 6.7762635780344027e-21 Solution 0 in TSymLinearSolver: Tsol[ 0, 0] = 4.7112194922704051e-19 Tsol[ 0, 1] = -5.6056129123484051e-19 Tsol[ 0, 2] = 2.0260594432390074e-19 Tsol[ 0, 3] = -1.1337836054961630e-19 Tsol[ 0, 4] = 5.1193219129188954e-21 Tsol[ 0, 5] = 3.9195102017660203e-20 Tsol[ 0, 6] = -2.2436181292286647e-14 Tsol[ 0, 7] = 5.4710965110526591e-16 Tsol[ 0, 8] = 6.9136874427838209e-15 Factorization successful. CompoundVector "SOL[ 0]" with 4 components: Component 1: DenseVector "SOL[ 0][ 0]" with 4 elements: SOL[ 0][ 0][ 1]= 4.7112194922704051e-19 SOL[ 0][ 0][ 2]=-5.6056129123484051e-19 SOL[ 0][ 0][ 3]= 2.0260594432390074e-19 SOL[ 0][ 0][ 4]=-1.1337836054961630e-19 Component 2: DenseVector "SOL[ 0][ 1]" with 2 elements: SOL[ 0][ 1][ 1]= 5.1193219129188954e-21 SOL[ 0][ 1][ 2]= 3.9195102017660203e-20 Component 3: DenseVector "SOL[ 0][ 2]" with 1 elements: SOL[ 0][ 2][ 1]=-2.2436181292286647e-14 Component 4: DenseVector "SOL[ 0][ 3]" with 2 elements: SOL[ 0][ 3][ 1]= 5.4710965110526591e-16 SOL[ 0][ 3][ 2]= 6.9136874427838209e-15 CompoundVector "resid" with 8 components: Component 1: DenseVector "resid[ 0]" with 4 elements: resid[ 0][ 1]=-1.2275360290286931e-21 resid[ 0][ 2]=-1.2275360290286931e-21 resid[ 0][ 3]=-3.7719435932418062e-22 resid[ 0][ 4]=-6.3097337125544951e-21 Component 2: DenseVector "resid[ 1]" with 2 elements: resid[ 1][ 1]= 0.0000000000000000e+00 resid[ 1][ 2]= 0.0000000000000000e+00 Component 3: DenseVector "resid[ 2]" with 1 elements: resid[ 2][ 1]= 4.2351647362715017e-22 Component 4: DenseVector "resid[ 3]" with 2 elements: resid[ 3][ 1]= 0.0000000000000000e+00 resid[ 3][ 2]= 0.0000000000000000e+00 Component 5: DenseVector "resid[ 4]" with 4 elements: resid[ 4][ 1]= 0.0000000000000000e+00 resid[ 4][ 2]=-2.8783300377431135e-23 resid[ 4][ 3]= 0.0000000000000000e+00 resid[ 4][ 4]= 0.0000000000000000e+00 Component 6: DenseVector "resid[ 5]" with 0 elements: Component 7: DenseVector "resid[ 6]" with 2 elements: resid[ 6][ 1]=-1.5894954016802662e-23 resid[ 6][ 2]=-1.2273211559398853e-22 Component 8: DenseVector "resid[ 7]" with 0 elements: max-norm resid_x 6.309734e-21 max-norm resid_s 0.000000e+00 max-norm resid_c 4.235165e-22 max-norm resid_d 0.000000e+00 max-norm resid_zL 2.878330e-23 max-norm resid_zU 0.000000e+00 max-norm resid_vL 1.227321e-22 max-norm resid_vU 0.000000e+00 nrm_rhs = 2.15e-06 nrm_sol = 4.16e-05 nrm_resid = 6.31e-21 residual_ratio = 1.443748e-16 *** Step Calculated for Iteration: 7 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 6.2652408419964199e-06 delta[ 0][ 2]=-7.1082302230652580e-06 delta[ 0][ 3]= 2.1484200753448010e-06 delta[ 0][ 4]=-1.3054306942759633e-06 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.4263887633871657e-06 delta[ 1][ 2]=-3.2456323788051419e-06 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 2.8767389918096496e-06 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-8.9578023616222179e-07 delta[ 3][ 2]= 2.0591086459823505e-06 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-2.7284348833184789e-06 delta[ 4][ 2]= 3.1369317707575831e-06 delta[ 4][ 3]=-5.6576557368342686e-06 delta[ 4][ 4]=-4.1552305212932867e-05 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 8.9576181203463457e-07 delta[ 6][ 2]=-2.0591270700544266e-06 Component 8: DenseVector "delta[ 7]" with 0 elements: ************************************************** *** Finding Acceptable Trial Point for Iteration 7: ************************************************** --> Starting line search in iteration 7 <-- Mu has changed in line search - resetting watchdog counters. Acceptable Check: overall_error = 2.1540498233864880e-06 acceptable_tol_ = 2.5000000000000002e-06 dual_inf = 3.6266241913631564e-08 acceptable_dual_inf_tol_ = 1.0000000000000000e+10 constr_viol = 0.0000000000000000e+00 acceptable_constr_viol_tol_ = 1.0000000000000000e-02 compl_inf = 2.1540498233864880e-06 acceptable_compl_inf_tol_ = 1.0000000000000000e-02 curr_obj_val_ = 2.9894383464029904e+01 last_obj_val = 2.9894810258333443e+01 fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) = 1.4276738774457737e-05 acceptable_obj_change_tol_ = 1.0000000000000000e+20 test iter = 7 Storing current iterate as backup acceptable point. The current filter has 0 entries. Relative step size for delta_x = 7.108180e-06 minimal step size ALPHA_MIN = 3.479185E-12 Starting checks for alpha (primal) = 1.00e+00 Checking acceptability for trial step size alpha_primal_test= 1.000000e+00: New values of barrier function = 2.9894378202211509e+01 (reference 2.9894383567756453e+01): New values of constraint violation = 6.9430017290983415e-12 (reference 3.7627721383159951e-08): reference_theta = 3.762772e-08 reference_gradBarrTDelta = -5.407549e-06 Checking sufficient reduction... Succeeded... Checking filter acceptability... Succeeded... reference_theta = 3.762772e-08 reference_gradBarrTDelta = -5.407549e-06 Convergence Check: overall_error = 2.5601472143227895e-09 IpData().tol() = 2.4999999999999999e-08 dual_inf = 6.7104923836286564e-12 dual_inf_tol_ = 1.0000000000000000e+00 constr_viol = 1.1102230246251565e-16 constr_viol_tol_ = 1.0000000000000000e-04 compl_inf = 2.5601472143227895e-09 compl_inf_tol_ = 1.0000000000000000e-04 ************************************************** *** Summary of Iteration: 8: ************************************************** iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 8 2.9894378e+01 1.11e-16 6.71e-12 -8.6 7.11e-06 - 1.00e+00 1.00e+00h 1 ************************************************** *** Beginning Iteration 8 from the following point: ************************************************** Current barrier parameter mu = 2.5059035596800618e-09 Current fraction-to-the-boundary parameter tau = 9.9999999749409640e-01 ||curr_x||_inf = 6.3552157588044078e-01 ||curr_s||_inf = 2.0999999796094247e+01 ||curr_y_c||_inf = 1.8371240051781506e+01 ||curr_y_d||_inf = 5.8035508519546564e-01 ||curr_z_L||_inf = 2.4333262262711072e-01 ||curr_z_U||_inf = 0.0000000000000000e+00 ||curr_v_L||_inf = 5.8035508519549073e-01 ||curr_v_U||_inf = 0.0000000000000000e+00 ||delta_x||_inf = 7.1082302230652580e-06 ||delta_s||_inf = 4.4263887633871657e-06 ||delta_y_c||_inf = 2.8767389918096496e-06 ||delta_y_d||_inf = 2.0591086459823505e-06 ||delta_z_L||_inf = 4.1552305212932867e-05 ||delta_z_U||_inf = 0.0000000000000000e+00 ||delta_v_L||_inf = 2.0591270700544266e-06 ||delta_v_U||_inf = 0.0000000000000000e+00 DenseVector "curr_x" with 4 elements: curr_x[ 1]= 6.3552157588044078e-01 curr_x[ 2]= 2.0662786454876144e-10 curr_x[ 3]= 3.1270187526127102e-01 curr_x[ 4]= 5.1776548651660287e-02 DenseVector "curr_s" with 2 elements: curr_s[ 1]= 2.0999999796094247e+01 curr_s[ 2]= 4.9999999543293958e+00 DenseVector "curr_y_c" with 1 elements: curr_y_c[ 1]=-1.8371240051781506e+01 DenseVector "curr_y_d" with 2 elements: curr_y_d[ 1]=-4.1054107970688980e-01 curr_y_d[ 2]=-5.8035508519546564e-01 DenseVector "curr_slack_x_L" with 4 elements: curr_slack_x_L[ 1]= 6.3552158588044083e-01 curr_slack_x_L[ 2]= 1.0206627864548762e-08 curr_slack_x_L[ 3]= 3.1270188526127102e-01 curr_slack_x_L[ 4]= 5.1776558651660289e-02 DenseVector "curr_slack_x_U" with 0 elements: DenseVector "curr_z_L" with 4 elements: curr_z_L[ 1]= 3.9161679371860160e-09 curr_z_L[ 2]= 2.4333262262711072e-01 curr_z_L[ 3]= 7.9748433126077562e-09 curr_z_L[ 4]= 4.9446067506085493e-08 DenseVector "curr_z_U" with 0 elements: DenseVector "curr_slack_s_L" with 2 elements: curr_slack_s_L[ 1]= 6.0942468849134457e-09 curr_slack_s_L[ 2]= 4.3293955087619906e-09 DenseVector "curr_slack_s_U" with 0 elements: DenseVector "curr_v_L" with 2 elements: curr_v_L[ 1]= 4.1054107970691489e-01 curr_v_L[ 2]= 5.8035508519549073e-01 DenseVector "curr_v_U" with 0 elements: DenseVector "curr_grad_lag_x" with 4 elements: curr_grad_lag_x[ 1]=-1.3972073789560082e-12 curr_grad_lag_x[ 2]= 2.9990732119955510e-12 curr_grad_lag_x[ 3]=-6.7104923836286564e-12 curr_grad_lag_x[ 4]= 2.2428291794845782e-12 DenseVector "curr_grad_lag_s" with 2 elements: curr_grad_lag_s[ 1]=-2.5091040356528538e-14 curr_grad_lag_s[ 2]=-2.5091040356528538e-14 CompoundVector "delta" with 8 components: Component 1: DenseVector "delta[ 0]" with 4 elements: delta[ 0][ 1]= 6.2652408419964199e-06 delta[ 0][ 2]=-7.1082302230652580e-06 delta[ 0][ 3]= 2.1484200753448010e-06 delta[ 0][ 4]=-1.3054306942759633e-06 Component 2: DenseVector "delta[ 1]" with 2 elements: delta[ 1][ 1]=-4.4263887633871657e-06 delta[ 1][ 2]=-3.2456323788051419e-06 Component 3: DenseVector "delta[ 2]" with 1 elements: delta[ 2][ 1]= 2.8767389918096496e-06 Component 4: DenseVector "delta[ 3]" with 2 elements: delta[ 3][ 1]=-8.9578023616222179e-07 delta[ 3][ 2]= 2.0591086459823505e-06 Component 5: DenseVector "delta[ 4]" with 4 elements: delta[ 4][ 1]=-2.7284348833184789e-06 delta[ 4][ 2]= 3.1369317707575831e-06 delta[ 4][ 3]=-5.6576557368342686e-06 delta[ 4][ 4]=-4.1552305212932867e-05 Component 6: DenseVector "delta[ 5]" with 0 elements: Component 7: DenseVector "delta[ 6]" with 2 elements: delta[ 6][ 1]= 8.9576181203463457e-07 delta[ 6][ 2]=-2.0591270700544266e-06 Component 8: DenseVector "delta[ 7]" with 0 elements: ***Current NLP Values for Iteration 8: (scaled) (unscaled) Objective...............: 2.9894378048973930e+01 2.9894378048973930e+01 Dual infeasibility......: 6.7104923836286564e-12 6.7104923836286564e-12 Constraint violation....: 1.1102230246251565e-16 1.1102230246251565e-16 Complementarity.........: 2.5601472143227895e-09 2.5601472143227895e-09 Overall NLP error.......: 2.5601472143227895e-09 2.5601472143227895e-09 DenseVector "grad_f" with 4 elements: grad_f[ 1]= 2.4550000000000001e+01 grad_f[ 2]= 2.6750000000000000e+01 grad_f[ 3]= 3.9000000000000000e+01 grad_f[ 4]= 4.0500000000000000e+01 DenseVector "curr_c" with 1 elements: curr_c[ 1]=-1.1102230246251565e-16 DenseVector "curr_d" with 2 elements: curr_d[ 1]= 2.0999999796087305e+01 curr_d[ 2]= 4.9999999543293967e+00 DenseVector "curr_d - curr_s" with 2 elements: curr_d - curr_s[ 1]=-6.9420025283761788e-12 curr_d - curr_s[ 2]= 8.8817841970012523e-16 GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements: jac_c[ 1, 1]= 1.0000000000000000e+00 (0) jac_c[ 1, 2]= 1.0000000000000000e+00 (1) jac_c[ 1, 3]= 1.0000000000000000e+00 (2) jac_c[ 1, 4]= 1.0000000000000000e+00 (3) GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements: jac_d[ 1, 1]= 1.1798924608988067e+01 (0) jac_d[ 1, 2]= 1.1899999999955638e+01 (1) jac_d[ 1, 3]= 3.4556392029537029e+01 (2) jac_d[ 1, 4]= 5.2063726005876163e+01 (3) jac_d[ 2, 1]= 2.2999999999999998e+00 (4) jac_d[ 2, 2]= 5.5999999999999996e+00 (5) jac_d[ 2, 3]= 1.1100000000000000e+01 (6) jac_d[ 2, 4]= 1.3000000000000000e+00 (7) SymTMatrix "W" of dimension 4 with 10 nonzero elements: W[ 1, 1]= 1.2296220471794007e-01 (0) W[ 2, 1]=-5.2608573728596901e-08 (1) W[ 3, 1]=-2.4969519213810942e-01 (2) W[ 4, 1]=-1.2504448837915186e-03 (3) W[ 2, 2]= 8.8142001240504808e-02 (4) W[ 3, 2]=-1.8951947361231929e-06 (5) W[ 4, 2]=-9.4909178718310217e-09 (6) W[ 3, 3]= 5.1492700270553149e-01 (7) W[ 4, 3]=-4.5046584493996081e-02 (8) W[ 4, 4]= 2.8739567907856894e-01 (9) Number of Iterations....: 8 (scaled) (unscaled) Objective...............: 2.9894378048973930e+01 2.9894378048973930e+01 Dual infeasibility......: 6.7104923836286564e-12 6.7104923836286564e-12 Constraint violation....: 1.1102230246251565e-16 1.1102230246251565e-16 Complementarity.........: 2.5601472143227895e-09 2.5601472143227895e-09 Overall NLP error.......: 2.5601472143227895e-09 2.5601472143227895e-09 DenseVector "x" with 4 elements: x[ 1]= 6.3552157588044078e-01 x[ 2]= 2.0662786454876144e-10 x[ 3]= 3.1270187526127102e-01 x[ 4]= 5.1776548651660287e-02 DenseVector "y_c" with 1 elements: y_c[ 1]=-1.8371240051781506e+01 DenseVector "y_d" with 2 elements: y_d[ 1]=-4.1054107970688980e-01 y_d[ 2]=-5.8035508519546564e-01 DenseVector "z_L" with 4 elements: z_L[ 1]= 3.9161679371860160e-09 z_L[ 2]= 2.4333262262711072e-01 z_L[ 3]= 7.9748433126077562e-09 z_L[ 4]= 4.9446067506085493e-08 DenseVector "z_U" with 0 elements: DenseVector "v_L" with 2 elements: v_L[ 1]= 4.1054107970691489e-01 v_L[ 2]= 5.8035508519549073e-01 DenseVector "v_U" with 0 elements: Number of objective function evaluations = 9 Number of objective gradient evaluations = 9 Number of equality constraint evaluations = 9 Number of inequality constraint evaluations = 9 Number of equality constraint Jacobian evaluations = 9 Number of inequality constraint Jacobian evaluations = 9 Number of Lagrangian Hessian evaluations = 8 Total CPU secs in IPOPT (w/o function evaluations) = 0.013 Total CPU secs in NLP function evaluations = 0.000 EXIT: Optimal Solution Found. DenseVector "final x unscaled" with 4 elements: final x unscaled[ 1]= 6.3552157588044078e-01 final x unscaled[ 2]= 2.0662786454876144e-10 final x unscaled[ 3]= 3.1270187526127102e-01 final x unscaled[ 4]= 5.1776548651660287e-02 DenseVector "final y_c unscaled" with 1 elements: final y_c unscaled[ 1]=-1.8371240051781506e+01 DenseVector "final y_d unscaled" with 2 elements: final y_d unscaled[ 1]=-4.1054107970688980e-01 final y_d unscaled[ 2]=-5.8035508519546564e-01 DenseVector "final z_L unscaled" with 4 elements: final z_L unscaled[ 1]= 3.9161679371860160e-09 final z_L unscaled[ 2]= 2.4333262262711072e-01 final z_L unscaled[ 3]= 7.9748433126077562e-09 final z_L unscaled[ 4]= 4.9446067506085493e-08 DenseVector "final z_U unscaled" with 0 elements: