! G08CCF Example Program Text
! Mark 27.0 Release. NAG Copyright 2019.
Module g08ccfe_mod
! G08CCF Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: user_cdf
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: std = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: xmean = 0.75_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6
Contains
Function user_cdf(x)
! Cumulative distribution function for the user supplied distribution.
! In this example, the distribution is the normal distribution, with
! mean = 0.75 and standard deviation = 0.5
! .. Use Statements ..
Use nag_library, Only: s15abf
! .. Function Return Value ..
Real (Kind=nag_wp) :: user_cdf
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
! .. Local Scalars ..
Real (Kind=nag_wp) :: z
Integer :: ifail
! .. Executable Statements ..
z = (x-xmean)/std
ifail = -1
user_cdf = s15abf(z,ifail)
Return
End Function user_cdf
End Module g08ccfe_mod
Program g08ccfe
! G08CCF Example Main Program
! .. Use Statements ..
Use g08ccfe_mod, Only: nin, nout, user_cdf
Use nag_library, Only: g08ccf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: d, p, z
Integer :: ifail, n, ntype
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: sx(:), x(:)
! .. Executable Statements ..
Write (nout,*) 'G08CCF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
! Read in problem type and required statistic
Read (nin,*) n, ntype
Allocate (x(n),sx(n))
! Read in data
Read (nin,*) x(1:n)
! Perform K-S test for user specified distribution
ifail = 0
Call g08ccf(n,x,user_cdf,ntype,d,z,p,sx,ifail)
! Display results
Write (nout,*) 'Test against normal distribution with mean = 0.75'
Write (nout,*) 'and standard deviation = 0.5.'
Write (nout,*)
Write (nout,99999) 'Test statistic D = ', d
Write (nout,99999) 'Z statistic = ', z
Write (nout,99999) 'Tail probability = ', p
99999 Format (1X,A,F8.4)
End Program g08ccfe