/* E01EB_A1W_F C++ Header Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
* Mark 27, 2019.
*/
#include <nag.h>
#include <nagad.h>
#include <stdio.h>
#include <math.h>
#include <nag_stdlib.h>
#include <string>
#include <iostream>
using namespace std;
int main(void)
{
// Scalars
int exit_status = 0;
cout << "E01EB_A1W_F C++ Header Example Program Results\n\n";
// Skip first line of data file
string mystr;
getline (cin, mystr);
// Read number of data points
Integer n;
cin >> n;
// Allocate arrays for data and interpolant
nagad_a1w_w_rtype *x = 0, *y = 0, *f = 0;
Integer *triang = 0;
if (!(x = NAG_ALLOC(n, nagad_a1w_w_rtype)) ||
!(y = NAG_ALLOC(n, nagad_a1w_w_rtype)) ||
!(f = NAG_ALLOC(n, nagad_a1w_w_rtype)) ||
!(triang = NAG_ALLOC(7*n, Integer))) {
printf("Allocation failure\n");
exit_status = -1;
}
if (exit_status==0) {
// Create AD tape
nagad_a1w_ir_create();
// Create AD configuration data object
Integer ifail = 0;
void *ad_handle = 0;
x10aa_a1w_f_(ad_handle,ifail);
// Read data and register variables
for (int i=0; i<n; i++) {
double xr, yr, fr;
cin >> xr >> yr >> fr;
x[i].value = xr;
x[i].id = 0;
y[i].value = yr;
y[i].id = 0;
f[i].value = fr;
f[i].id = 0;
nagad_a1w_ir_register_variable(&x[i]);
nagad_a1w_ir_register_variable(&y[i]);
nagad_a1w_ir_register_variable(&f[i]);
}
// Call the AD routine
ifail = 0;
e01ea_a1w_f_(ad_handle,n,x,y,triang,ifail);
// Evaluate interpolant and derivatives at a mid-point
nagad_a1w_w_rtype px[1], py[1], pf[1];
double xint, yint;
xint = 0.5*(nagad_a1w_get_value(x[n/2-1]) + nagad_a1w_get_value(x[n/2]));
yint = 0.5*(nagad_a1w_get_value(y[n/2-1]) + nagad_a1w_get_value(y[n/2]));
px[0].value = xint;
px[0].id = 0;
py[0].value = yint;
py[0].id = 0;
Integer m = 1;
ifail = 0;
e01eb_a1w_f_(ad_handle,m,n,x,y,f,triang,px,py,pf,ifail);
cout << "\n Interpolant point: x = " << xint << " y = " << yint << endl;
cout.precision(5);
cout << " Interpolated value = " << nagad_a1w_get_value(pf[0]) << endl;
// Setup evaluation of derivatives via adjoints.
double inc = 1.0;
nagad_a1w_inc_derivative(&pf[0],inc);
ifail = 0;
nagad_a1w_ir_interpret_adjoint(ifail);
cout << "\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
// Get derivatives
cout << "\n Derivatives of fitted value w.r.t. data points:\n\n";
cout << " i d/dx d/dy d/df\n";
cout.setf(ios::scientific,ios::floatfield);
cout.precision(4);
for (int j=0; j < n; j++) {
double dx = nagad_a1w_get_derivative(x[j]);
double dy = nagad_a1w_get_derivative(y[j]);
double df = nagad_a1w_get_derivative(f[j]);
cout.width(5); cout << j+1;
cout.width(12); cout << dx;
cout.width(12); cout << dy;
cout.width(12); cout << df << endl;
}
// Remove computational data object and tape
x10ab_a1w_f_(ad_handle,ifail);
nagad_a1w_ir_remove();
}
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(f);
NAG_FREE(triang);
return exit_status;
}