Example description
    Program d03ubfe

!     D03UBF Example Program Text

!     Mark 27.0 Release. NAG Copyright 2019.

!     .. Use Statements ..
      Use nag_library, Only: d03ubf, nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Parameters ..
      Real (Kind=nag_wp), Parameter    :: one = 1.0_nag_wp
      Real (Kind=nag_wp), Parameter    :: two = 2.0_nag_wp
      Real (Kind=nag_wp), Parameter    :: zero = 0.0_nag_wp
      Integer, Parameter               :: nin = 5, nout = 6
!     .. Local Scalars ..
      Real (Kind=nag_wp)               :: adel, aparam, ares, delmax, delmn,   &
                                          resmax, resmn, root2, x1, x2, y1,    &
                                          y2, yy, z1, z2
      Integer                          :: i, ifail, it, j, k, lda, n1, n2, n3, &
                                          nits, sda
!     .. Local Arrays ..
      Real (Kind=nag_wp), Allocatable  :: a(:,:,:), b(:,:,:), c(:,:,:),        &
                                          d(:,:,:), e(:,:,:), f(:,:,:),        &
                                          g(:,:,:), q(:,:,:), r(:,:,:),        &
                                          t(:,:,:), wrksp1(:,:,:),             &
                                          wrksp2(:,:,:), wrksp3(:,:,:), x(:),  &
                                          y(:), z(:)
!     .. Intrinsic Procedures ..
      Intrinsic                        :: abs, cos, exp, max, real, sqrt
!     .. Executable Statements ..
      Write (nout,*) 'D03UBF Example Program Results'
      Write (nout,*)
!     Skip heading in data file
      Read (nin,*)
      Read (nin,*) n1, n2, n3, nits
      lda = n1
      sda = n2
      Allocate (a(lda,sda,n3),b(lda,sda,n3),c(lda,sda,n3),d(lda,sda,n3),       &
        e(lda,sda,n3),f(lda,sda,n3),g(lda,sda,n3),q(lda,sda,n3),r(lda,sda,n3), &
        t(lda,sda,n3),wrksp1(lda,sda,n3),wrksp2(lda,sda,n3),                   &
        wrksp3(lda,sda,n3),x(n1),y(n2),z(n3))

      Read (nin,*) x(1:n1)
      Read (nin,*) y(1:n2)
      Read (nin,*) z(1:n3)
      root2 = sqrt(two)
      aparam = one
!     Set up difference equation coefficients, source terms and
!     initial approximation
      a(1:n1,1:n2,1:n3) = zero
      b(1:n1,1:n2,1:n3) = zero
      c(1:n1,1:n2,1:n3) = zero
      e(1:n1,1:n2,1:n3) = zero
      f(1:n1,1:n2,1:n3) = zero
      g(1:n1,1:n2,1:n3) = zero
      q(1:n1,1:n2,1:n3) = zero
      t(1:n1,1:n2,1:n3) = zero
!     Specification for internal nodes
      Do k = 2, n3 - 1
        a(2:n1-1,2:n2-1,k) = two/((z(k)-z(k-1))*(z(k+1)-z(k-1)))
        g(2:n1-1,2:n2-1,k) = two/((z(k+1)-z(k))*(z(k+1)-z(k-1)))
      End Do
      Do j = 2, n2 - 1
        b(2:n1-1,j,2:n3-1) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
        f(2:n1-1,j,2:n3-1) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))
      End Do
      Do i = 2, n1 - 1
        c(i,2:n2-1,2:n3-1) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
        e(i,2:n2-1,2:n3-1) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))
      End Do
      d(1:n1,1:n2,1:n3) = -a(1:n1,1:n2,1:n3) - b(1:n1,1:n2,1:n3) -             &
        c(1:n1,1:n2,1:n3) - e(1:n1,1:n2,1:n3) - f(1:n1,1:n2,1:n3) -            &
        g(1:n1,1:n2,1:n3)
!     Specification for boundary nodes
      yy = one/y(n2)
      x1 = (x(1)+one)*yy
      x2 = (x(n1)+one)*yy
      Do j = 1, n2
        y1 = root2*y(j)*yy
        q(1,j,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
        q(n1,j,1:n3) = exp(x2)*cos(y1)*exp((-z(1:n3)-one)*yy)
      End Do
      y1 = root2*y(1)*yy
      y2 = root2*y(n2)*yy
      Do i = 1, n1
        x1 = (x(i)+one)*yy
        q(i,1,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
        q(i,n2,1:n3) = exp(x1)*cos(y2)*exp((-z(1:n3)-one)*yy)
      End Do
      z1 = (-z(1)-one)*yy
      z2 = (-z(n3)-one)*yy
      Do i = 1, n1
        x1 = (x(i)+one)*yy
        q(i,1:n2,1) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z1)
        q(i,1:n2,n3) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z2)
      End Do
!     Iterative loop
      Do it = 1, nits
        resmax = zero
        resmn = zero
        Do k = 1, n3
          Do j = 1, n2
            Do i = 1, n1
              If (d(i,j,k)/=zero) Then
!               Seven point molecule formula
                r(i,j,k) = q(i,j,k) - a(i,j,k)*t(i,j,k-1) -                    &
                  b(i,j,k)*t(i,j-1,k) - c(i,j,k)*t(i-1,j,k) -                  &
                  d(i,j,k)*t(i,j,k) - e(i,j,k)*t(i+1,j,k) -                    &
                  f(i,j,k)*t(i,j+1,k) - g(i,j,k)*t(i,j,k+1)
              Else
!               Explicit equation
                r(i,j,k) = q(i,j,k) - t(i,j,k)
              End If
              ares = abs(r(i,j,k))
              resmax = max(resmax,ares)
              resmn = resmn + ares
            End Do
          End Do
        End Do
        resmn = resmn/(real(n1*n2*n3,kind=nag_wp))

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call d03ubf(n1,n2,n3,lda,sda,a,b,c,d,e,f,g,aparam,it,r,wrksp1,wrksp2,  &
          wrksp3,ifail)

        If (it==1) Then
          Write (nout,99997) 'Iteration', 'Residual', 'Change'
          Write (nout,99996) 'No', 'Max.', 'Mean', 'Max.', 'Mean'
        End If

!       Update the dependent variable
        delmax = zero
        delmn = zero
        Do k = 1, n3
          Do j = 1, n2
            Do i = 1, n1
              t(i,j,k) = t(i,j,k) + r(i,j,k)
              adel = abs(r(i,j,k))
              delmax = max(delmax,adel)
              delmn = delmn + adel
            End Do
          End Do
        End Do
        delmn = delmn/(real(n1*n2*n3,kind=nag_wp))
        Write (nout,99999) it, resmax, resmn, delmax, delmn
!       Convergence tests here if required
      End Do
!     End of iterative loop
      Write (nout,*)
      Write (nout,*) 'Table of calculated function values'
      Write (nout,99995)
      Write (nout,*)
      Write (nout,99998)((k,j,(i,t(i,j,k),i=1,n1),j=1,n2),k=1,n3)

99999 Format (1X,I5,4(2X,E11.4))
99998 Format ((1X,I1,I3,1X,4(1X,I3,2X,F8.3)))
99997 Format (1X,A,6X,A,19X,A)
99996 Format (2X,A,7X,A,8X,A,11X,A,6X,A,/)
99995 Format (1X,'K  J',2X,4(1X,'(I      T   )'))
    End Program d03ubfe