Program d03ecfe
! D03ECF Example Program Text
! Mark 27.0 Release. NAG Copyright 2019.
! .. Use Statements ..
Use nag_library, Only: d03ecf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: aparam, conchn, conres, root2, x1, &
x2, y1, y2, yy, z1, z2
Integer :: i, ifail, itcoun, itmax, itused, &
ixn, iyn, izn, j, k, lda, n1, n2, &
n3, ndir, sda
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:,:), b(:,:,:), c(:,:,:), &
chngs(:), d(:,:,:), e(:,:,:), &
f(:,:,:), g(:,:,:), q(:,:,:), &
resids(:), t(:,:,:), wrksp1(:,:,:), &
wrksp2(:,:,:), wrksp3(:,:,:), &
wrksp4(:,:,:), x(:), y(:), z(:)
! .. Intrinsic Procedures ..
Intrinsic :: cos, exp, sqrt
! .. Executable Statements ..
Write (nout,*) 'D03ECF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n1, n2, n3, itmax
lda = n1
sda = n2
Allocate (a(lda,sda,n3),b(lda,sda,n3),c(lda,sda,n3),chngs(itmax), &
d(lda,sda,n3),e(lda,sda,n3),f(lda,sda,n3),g(lda,sda,n3),q(lda,sda,n3), &
resids(itmax),t(lda,sda,n3),wrksp1(lda,sda,n3),wrksp2(lda,sda,n3), &
wrksp3(lda,sda,n3),wrksp4(lda,sda,n3),x(n1),y(n2),z(n3))
Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)
Read (nin,*) z(1:n3)
Read (nin,*) conres, conchn
Read (nin,*) ndir
root2 = sqrt(two)
aparam = one
itcoun = 0
! Set up difference equation coefficients, source terms and
! initial approximation.
a(1:n1,1:n2,1:n3) = zero
b(1:n1,1:n2,1:n3) = zero
c(1:n1,1:n2,1:n3) = zero
d(1:n1,1:n2,1:n3) = zero
e(1:n1,1:n2,1:n3) = zero
f(1:n1,1:n2,1:n3) = zero
g(1:n1,1:n2,1:n3) = zero
q(1:n1,1:n2,1:n3) = zero
t(1:n1,1:n2,1:n3) = zero
! Non-zero Specification for internal nodes
Do k = 2, n3 - 1
Do j = 2, n2 - 1
Do i = 2, n1 - 1
a(i,j,k) = two/((z(k)-z(k-1))*(z(k+1)-z(k-1)))
g(i,j,k) = two/((z(k+1)-z(k))*(z(k+1)-z(k-1)))
b(i,j,k) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
f(i,j,k) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))
c(i,j,k) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
e(i,j,k) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))
d(i,j,k) = -a(i,j,k) - b(i,j,k) - c(i,j,k) - e(i,j,k) - f(i,j,k) - &
g(i,j,k)
End Do
End Do
End Do
! Non-zero specification for boundary nodes
yy = one/y(n2)
x1 = (x(1)+one)*yy
x2 = (x(n1)+one)*yy
Do j = 1, n2
y1 = root2*y(j)*yy
q(1,j,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
q(n1,j,1:n3) = exp(x2)*cos(y1)*exp((-z(1:n3)-one)*yy)
End Do
y1 = root2*y(1)*yy
y2 = root2*y(n2)*yy
Do i = 1, n1
x1 = (x(i)+one)*yy
q(i,1,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
q(i,n2,1:n3) = exp(x1)*cos(y2)*exp((-z(1:n3)-one)*yy)
End Do
z1 = (-z(1)-one)*yy
z2 = (-z(n3)-one)*yy
Do i = 1, n1
x1 = (x(i)+one)*yy
q(i,1:n2,1) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z1)
q(i,1:n2,n3) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z2)
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call d03ecf(n1,n2,n3,lda,sda,a,b,c,d,e,f,g,q,t,aparam,itmax,itcoun, &
itused,ndir,ixn,iyn,izn,conres,conchn,resids,chngs,wrksp1,wrksp2, &
wrksp3,wrksp4,ifail)
Write (nout,*) 'Iteration Maximum Maximum'
Write (nout,*) ' number residual change'
If (itused/=0) Then
Write (nout,99999)(i,resids(i),chngs(i),i=1,itused)
End If
Write (nout,*)
Write (nout,*) 'Table of calculated function values'
Write (nout,*)
Write (nout,99998)
Do k = 1, n3
Do j = 1, n2
Write (nout,99997) k, j, (i,t(i,j,k),i=1,n1)
End Do
End Do
99999 Format (2X,I3,9X,E11.4,4X,E11.4)
99998 Format (1X,'K J ',4(' (I T )'))
99997 Format (1X,I1,2X,I1,1X,4(1X,I3,2X,F8.3))
End Program d03ecfe