/* D01BD_A1W_F C++ Header Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
* Mark 27, 2019.
*/
#include <nag.h>
#include <dco.hpp>
#include <nagad.h>
#include <stdio.h>
#include <math.h>
#include <nag_stdlib.h>
#include <nagx01.h>
#include <iostream>
using namespace std;
extern "C"
{
static void NAG_CALL f(void * &ad_handle,
const nagad_a1w_w_rtype &x,
nagad_a1w_w_rtype &ret,
Integer iuser[],
nagad_a1w_w_rtype ruser[]);
}
int main(void)
{
// Scalars
int exit_status = 0;
cout << "D01BD_A1W_F C++ Header Example Program Results\n\n";
// Skip first line of data file
string mystr;
getline (cin, mystr);
// Read problem parameters
double ar, br, epsabsr, epsrelr;
cin >> ar;
cin >> br;
cin >> epsabsr;
cin >> epsrelr;
nagad_a1w_w_rtype a, b, epsabs, epsrel;
a = ar; b = br; epsabs = epsabsr; epsrel = epsrelr;
// Create AD tape
nagad_a1w_ir_create();
// Create AD configuration data object
Integer ifail = 0;
void *ad_handle = 0;
x10aa_a1w_f_(ad_handle,ifail);
nagad_a1w_w_rtype result, abserr, ruser[1];
Integer iuser[1];
ruser[0] = 10.0;
iuser[0] = 0;
// Register variables to differentiate w.r.t.
nagad_a1w_ir_register_variable(&ruser[0]);
// Call the AD routine
ifail = -1;
d01bd_a1w_f_(ad_handle,f,a,b,epsabs,epsrel,result,abserr,
iuser,ruser,ifail);
// Print inputs and primal outputs.
cout << "\n lower limit of integration (a) = " << ar << endl;
cout << " upper limit of integration (b) = " << br << endl;
cout << " absolute accuracy requested = " << epsabsr << endl;
cout << " relative accuracy requested = " << epsrelr << endl;
cout.setf(ios::scientific,ios::floatfield);
cout.precision(4);
if (ifail >= 0) {
cout << "\n approximation to the integral : " << nagad_a1w_get_value(result) << endl;
cout << " estimate of the absolute error : " << nagad_a1w_get_value(abserr) << endl;
cout << " number of function evaluations : " << iuser[0] << endl;
}
// Setup evaluation of derivatives via adjoints.
double inc = 1.0;
nagad_a1w_inc_derivative(&result,inc);
ifail = 0;
nagad_a1w_ir_interpret_adjoint(ifail);
cout << "\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
// Get derivatives
double dr = nagad_a1w_get_derivative(ruser[0]);
cout << "\n Derivative of solution w.r.t to ruser[0]:\n";
cout << " d/dr(x) = " << dr << endl;
// Remove computational data object and tape
x10ab_a1w_f_(ad_handle,ifail);
nagad_a1w_ir_remove();
return exit_status;
}
static void NAG_CALL f(void * &ad_handle,
const nagad_a1w_w_rtype &x,
nagad_a1w_w_rtype &ret,
Integer iuser[],
nagad_a1w_w_rtype ruser[])
{
// dco/c++ used here to perform AD of the following
double pi = X01AAC;
nagad_a1w_w_rtype prx, x2, s;
x2 = x*x;
prx = pi*ruser[0];
prx = prx*x;
s = sin(prx);
ret = x2*s;
iuser[0]++;
return;
}