```    Program c06pqfe

!     C06PQF Example Program Text

!     Mark 27.0 Release. NAG Copyright 2019.

!     .. Use Statements ..
Use nag_library, Only: c06pqf, nag_wp
!     .. Implicit None Statement ..
Implicit None
!     .. Parameters ..
Integer, Parameter               :: nin = 5, nout = 6
!     .. Local Scalars ..
Integer                          :: i, ieof, ifail, j, m, n
!     .. Local Arrays ..
Real (Kind=nag_wp), Allocatable  :: work(:), x(:)
!     .. Executable Statements ..
Write (nout,*) 'C06PQF Example Program Results'
!     Skip heading in data file
loop: Do
If (ieof<0) Then
Exit loop
End If

Allocate (work((m+2)*n+15),x(m*(n+2)))
Do j = 1, m*(n+2), n + 2
End Do
Write (nout,*)
Write (nout,*) 'Original data values'
Write (nout,*)
Do j = 1, m*(n+2), n + 2
Write (nout,99999) '     ', (x(j+i),i=0,n-1)
End Do

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call c06pqf('F',n,m,x,work,ifail)

Write (nout,*)
Write (nout,*)                                                         &
'Discrete Fourier transforms in complex Hermitian format'
Do j = 1, m*(n+2), n + 2
Write (nout,*)
Write (nout,99999) 'Real ', (x(j+2*i),i=0,n/2)
Write (nout,99999) 'Imag ', (x(j+2*i+1),i=0,n/2)
End Do
Write (nout,*)
Write (nout,*) 'Fourier transforms in full complex form'

Do j = 1, m*(n+2), n + 2
Write (nout,*)
Write (nout,99999) 'Real ', (x(j+2*i),i=0,n/2),                      &
(x(j+2*(n-i)),i=n/2+1,n-1)
Write (nout,99999) 'Imag ', (x(j+2*i+1),i=0,n/2),                    &
(-x(j+2*(n-i)+1),i=n/2+1,n-1)
End Do

Call c06pqf('B',n,m,x,work,ifail)

Write (nout,*)
Write (nout,*) 'Original data as restored by inverse transform'
Write (nout,*)
Do j = 1, m*(n+2), n + 2
Write (nout,99999) '     ', (x(j+i),i=0,n-1)
End Do
Deallocate (x,work)
End Do loop

99999 Format (1X,A,9(:,1X,F10.4))
End Program c06pqfe
```