E04SVF Example Program Results E04SV, NLP-SDP Solver (Pennon) ------------------------------ Number of variables 16 [eliminated 0] simple linear nonlin (Standard) inequalities 0 0 0 (Standard) equalities 0 0 Matrix inequalities 1 0 [dense 1, sparse 0] [max dimension 10] Begin of Options Print File = 6 * d Print Level = 2 * d Print Options = Yes * d Monitoring File = -1 * d Monitoring Level = 4 * d Monitor Frequency = 0 * d Infinite Bound Size = 1.00000E+20 * d Task = Minimize * d Stats Time = No * d Dimacs Measures = Check * d Hessian Density = Dense * S Init Value P = 1.00000E+00 * d Init Value Pmat = 1.00000E+00 * d Initial P = Automatic * d Initial U = Automatic * d Initial X = Automatic * U Inner Iteration Limit = 100 * d Inner Stop Criteria = Heuristic * d Inner Stop Tolerance = 1.00000E-02 * d Linesearch Mode = Fullstep * S Outer Iteration Limit = 100 * d P Min = 1.05367E-08 * d P Update Speed = 12 * d Pmat Min = 1.05367E-08 * d Preference = Speed * d Presolve Block Detect = Yes * d Stop Criteria = Soft * d Stop Tolerance 1 = 1.00000E-06 * d Stop Tolerance 2 = 1.00000E-07 * d Stop Tolerance Feasibility = 1.00000E-07 * d Transform Constraints = No * S U Update Restriction = 5.00000E-01 * d Umat Update Restriction = 3.00000E-01 * d End of Options -------------------------------------------------------------- it| objective | optim | feas | compl | pen min |inner -------------------------------------------------------------- 0 0.00000E+00 4.71E+01 1.00E+01 4.81E+01 1.60E+01 0 1 9.55399E+01 9.29E-03 0.00E+00 9.52E+01 1.60E+01 8 2 3.93849E+01 1.16E-03 0.00E+00 3.81E+01 6.63E+00 5 3 1.68392E+01 1.19E-02 0.00E+00 1.52E+01 2.75E+00 3 4 8.50544E+00 7.32E-04 0.00E+00 5.78E+00 1.14E+00 4 5 5.62254E+00 1.56E-02 0.00E+00 2.07E+00 4.72E-01 3 6 4.63348E+00 7.66E-03 0.00E+00 7.33E-01 1.96E-01 4 7 4.25322E+00 2.99E-03 0.00E+00 2.72E-01 8.11E-02 4 8 4.10154E+00 2.41E-03 0.00E+00 1.05E-01 3.36E-02 4 9 4.04076E+00 1.87E-03 0.00E+00 4.14E-02 1.39E-02 4 10 4.01631E+00 6.25E-03 0.00E+00 1.65E-02 5.77E-03 5 11 4.00656E+00 3.23E-03 0.00E+00 6.59E-03 2.39E-03 5 12 4.00263E+00 2.89E-03 0.00E+00 2.64E-03 9.91E-04 5 13 4.00106E+00 2.08E-03 0.00E+00 1.06E-03 4.11E-04 5 14 4.00042E+00 1.53E-03 0.00E+00 4.25E-04 1.70E-04 5 -------------------------------------------------------------- it| objective | optim | feas | compl | pen min |inner -------------------------------------------------------------- 15 4.00017E+00 1.30E-06 0.00E+00 1.70E-04 7.05E-05 6 16 4.00007E+00 7.48E-07 0.00E+00 6.82E-05 2.92E-05 6 17 4.00003E+00 3.20E-07 0.00E+00 2.73E-05 1.21E-05 6 18 4.00001E+00 1.31E-07 0.00E+00 1.10E-05 5.02E-06 6 19 4.00000E+00 5.15E-08 0.00E+00 4.39E-06 2.08E-06 6 20 4.00000E+00 1.92E-08 0.00E+00 1.76E-06 8.62E-07 6 21 4.00000E+00 7.13E-09 0.00E+00 7.05E-07 3.57E-07 6 22 4.00000E+00 2.09E-09 0.00E+00 2.82E-07 1.48E-07 6 -------------------------------------------------------------- Status: converged, an optimal solution found -------------------------------------------------------------- Final objective value 4.000000E+00 Relative precision 8.450361E-08 Optimality 2.088293E-09 Feasibility 0.000000E+00 Complementarity 2.822749E-07 DIMACS error 1 1.044147E-09 DIMACS error 2 0.000000E+00 DIMACS error 3 0.000000E+00 DIMACS error 4 0.000000E+00 DIMACS error 5 3.294796E-08 DIMACS error 6 3.136387E-08 Iteration counts Outer iterations 22 Inner iterations 112 Linesearch steps 308 Evaluation counts Augm. Lagr. values 135 Augm. Lagr. gradient 135 Augm. Lagr. hessian 112 -------------------------------------------------------------- The solver chose to use DENSE hessian and FULLSTEP as linesearch. Lovasz theta number of the given graph is 4.00