nag_opt_handle_set_get_real (e04rxc) Example Program Results ---------------------------------------------- E04MT, Interior point method for LP problems ---------------------------------------------- Begin of Options Print File = 6 * d Print Level = 2 * d Print Options = Yes * d Print Solution = X * U Monitoring File = -1 * d Monitoring Level = 4 * d Lpipm Monitor Frequency = 1 * U Infinite Bound Size = 1.00000E+20 * d Task = Minimize * d Stats Time = No * d Lp Presolve = Yes * d Lpipm Algorithm = Primal-dual * d Lpipm Centrality Correctors = -6 * U Lpipm Iteration Limit = 100 * d Lpipm Max Iterative Refinement= 5 * d Lpipm Scaling = Arithmetic * d Lpipm Stop Tolerance = 1.05367E-08 * d Lpipm Stop Tolerance 2 = 2.67452E-10 * d Lpipm System Formulation = Auto * d End of Options Original Problem Statistics Number of variables 7 Number of constraints 7 Free variables 0 Number of nonzeros 41 Presolved Problem Statistics Number of variables 13 Number of constraints 7 Free variables 0 Number of nonzeros 47 ------------------------------------------------------------------------------ it| pobj | dobj | optim | feas | compl | mu | mcc | I ------------------------------------------------------------------------------ 0 -7.86591E-02 1.71637E-02 1.27E+00 1.06E+00 8.89E-02 1.5E-01 1 5.74135E-03 -2.24369E-02 6.11E-16 1.75E-01 2.25E-02 2.8E-02 0 2 1.96803E-02 1.37067E-02 5.06E-16 2.28E-02 2.91E-03 3.4E-03 0 3 2.15232E-02 1.96162E-02 7.00E-15 9.24E-03 1.44E-03 1.7E-03 0 4 2.30321E-02 2.28676E-02 1.15E-15 2.21E-03 2.97E-04 3.4E-04 0 monit() reports good approximate solution (tol =, 1.00e-03): X1: -9.99e-03 X2: -1.00e-01 X3: 3.00e-02 X4: 2.00e-02 X5: -6.73e-02 X6: -2.35e-03 X7: -2.27e-04 end of monit() 5 2.35658E-02 2.35803E-02 1.32E-15 1.02E-04 8.41E-06 9.6E-06 0 monit() reports good approximate solution (tol =, 1.00e-03): X1: -1.00e-02 X2: -1.00e-01 X3: 3.00e-02 X4: 2.00e-02 X5: -6.75e-02 X6: -2.28e-03 X7: -2.35e-04 end of monit() 6 2.35965E-02 2.35965E-02 1.64E-15 7.02E-08 6.35E-09 7.2E-09 0 monit() reports good approximate solution (tol =, 1.00e-03): X1: -1.00e-02 X2: -1.00e-01 X3: 3.00e-02 X4: 2.00e-02 X5: -6.75e-02 X6: -2.28e-03 X7: -2.35e-04 end of monit() 7 2.35965E-02 2.35965E-02 1.35E-15 3.52E-11 3.18E-12 3.6E-12 0 ------------------------------------------------------------------------------ Status: converged, an optimal solution found ------------------------------------------------------------------------------ Final primal objective value 2.359648E-02 Final dual objective value 2.359648E-02 Absolute primal infeasibility 4.168797E-15 Relative primal infeasibility 1.350467E-15 Absolute dual infeasibility 5.084353E-11 Relative dual infeasibility 3.518607E-11 Absolute complementarity gap 2.685778E-11 Relative complementarity gap 3.175366E-12 Iterations 7 Primal variables: idx Lower bound Value Upper bound 1 -1.00000E-02 -1.00000E-02 1.00000E-02 2 -1.00000E-01 -1.00000E-01 1.50000E-01 3 -1.00000E-02 3.00000E-02 3.00000E-02 4 -4.00000E-02 2.00000E-02 2.00000E-02 5 -1.00000E-01 -6.74853E-02 5.00000E-02 6 -1.00000E-02 -2.28013E-03 inf 7 -1.00000E-02 -2.34528E-04 inf