E04RDF Example Program Results Reading SDPA file: e04rdfe.opt ** At least one of maxnvar, maxnblk or maxnnz is too small. ** maxnvar should be at least 2, was 0. ** maxnblk should be at least 3, was 0. ** maxnnz should be at least 10, was 0. ** ABNORMAL EXIT from NAG Library routine e04rdf: IFAIL = 1 ** NAG soft failure - control returned Allocating space for the problem. NVAR = 2 NBLK = 3 NNZ = 10 Linear SDP problem was read, start formulating the problem The problem formulation in a handle is completed. Overview Status: Problem and option settings are editable. No of variables: 2 Objective function: linear Simple bounds: not defined yet Linear constraints: not defined yet Nonlinear constraints: not defined yet Cone constraints: not defined yet Matrix constraints: 3 E04SV, NLP-SDP Solver (Pennon) ------------------------------ Number of variables 2 [eliminated 0] simple linear nonlin (Standard) inequalities 0 2 0 (Standard) equalities 0 0 Matrix inequalities 1 0 [dense 1, sparse 0] [max dimension 2] Begin of Options Print File = 6 * d Print Level = 2 * d Print Options = Yes * d Monitoring File = -1 * d Monitoring Level = 4 * d Monitor Frequency = 0 * d Infinite Bound Size = 1.00000E+20 * d Task = Minimize * d Stats Time = No * d Dimacs Measures = Check * U Hessian Density = Dense * S Init Value P = 1.00000E+00 * d Init Value Pmat = 1.00000E+00 * d Initial P = Automatic * d Initial U = Automatic * d Initial X = Automatic * U Inner Iteration Limit = 100 * d Inner Stop Criteria = Heuristic * d Inner Stop Tolerance = 1.00000E-02 * d Linesearch Mode = Fullstep * S Outer Iteration Limit = 100 * d P Min = 1.05367E-08 * d P Update Speed = 12 * d Pmat Min = 1.05367E-08 * d Preference = Speed * d Presolve Block Detect = Yes * d Stop Criteria = Soft * d Stop Tolerance 1 = 1.00000E-06 * d Stop Tolerance 2 = 1.00000E-07 * d Stop Tolerance Feasibility = 1.00000E-07 * d Transform Constraints = No * S U Update Restriction = 5.00000E-01 * d Umat Update Restriction = 3.00000E-01 * d End of Options -------------------------------------------------------------- it| objective | optim | feas | compl | pen min |inner -------------------------------------------------------------- 0 0.00000E+00 4.06E+01 4.00E+00 3.16E+01 1.00E+00 0 1 4.02661E+01 1.07E-01 2.78E-01 1.52E+01 1.00E+00 5 2 2.90783E+01 6.52E-02 9.77E-02 2.78E+00 4.65E-01 5 3 2.84228E+01 1.67E-01 2.39E-01 7.76E-01 2.16E-01 2 4 2.97263E+01 3.98E-02 4.39E-02 2.05E-01 1.01E-01 3 5 2.99618E+01 5.01E-02 6.40E-03 3.32E-02 4.68E-02 2 6 2.99934E+01 1.45E-01 1.25E-03 6.23E-03 2.18E-02 1 7 2.99999E+01 3.31E-02 1.28E-05 4.16E-04 1.01E-02 1 8 3.00001E+01 9.97E-05 3.01E-07 9.67E-05 4.71E-03 1 9 3.00000E+01 1.37E-04 3.25E-08 2.25E-05 2.19E-03 1 10 3.00000E+01 1.16E-05 3.52E-09 5.23E-06 1.02E-03 1 11 3.00000E+01 1.13E-06 3.81E-10 1.22E-06 4.74E-04 1 -------------------------------------------------------------- Status: converged, an optimal solution found -------------------------------------------------------------- Final objective value 3.000000E+01 Relative precision 3.941484E-08 Optimality 1.133096E-06 Feasibility 3.806810E-10 Complementarity 1.216064E-06 DIMACS error 1 5.395697E-08 DIMACS error 2 0.000000E+00 DIMACS error 3 0.000000E+00 DIMACS error 4 7.613621E-11 DIMACS error 5 4.324629E-09 DIMACS error 6 2.296238E-08 Iteration counts Outer iterations 11 Inner iterations 23 Linesearch steps 50 Evaluation counts Augm. Lagr. values 35 Augm. Lagr. gradient 35 Augm. Lagr. hessian 23 -------------------------------------------------------------- Optimal solution: X = 1.00 1.00 Lagrangian multiplier for A_1 1 1 10.0000 Lagrangian multiplier for A_2 1 1 2.4321E-06 Lagrangian multiplier for A_3 1 2 1 2.8571 2 -2.8571 2.8571