Example description

nag_opt_handle_solve_dfno (e04jdc) Example Program Results

  --------------------------------------------------------
  E04J(D|E)), Derivative-free solver for bound constrained
              nonlinear functions
  --------------------------------------------------------
 
  Problem statistics
    Number of variables                  4
    Number of unconstrained variables    1
    Number of fixed variables            0
    Total interpolation points          10
 
 Begin of Options
     Print File                    =                   6     * d
     Print Level                   =                   2     * d
     Print Options                 =                 Yes     * d
     Print Solution                =                 All     * U
     Monitoring File               =                  -1     * d
     Monitoring Level              =                   4     * d
     Dfo Print Frequency           =                   1     * d
     Dfo Monitor Frequency         =                   0     * d
 
     Infinite Bound Size           =         1.00000E+20     * d
     Task                          =            Minimize     * d
     Stats Time                    =                  No     * d
 
     Dfo Max Objective Calls       =                 500     * d
     Dfo Max Soft Restarts         =                   5     * d
     Dfo Max Unsucc Soft Restarts  =                   3     * d
     Dfo Maximum Slow Steps        =                  20     * d
     Dfo Noise Level               =         0.00000E+00     * d
     Dfo Noisy Problem             =                  No     * d
     Dfo Number Interp Points      =                   0     * d
     Dfo Number Soft Restarts Pts  =                   3     * d
     Dfo Random Seed               =                  -1     * d
     Dfo Starting Trust Region     =         2.00000E-01     * U
     Dfo Trust Region Slow Tol     =         1.02648E-04     * d
     Dfo Trust Region Tolerance    =         5.00000E-06     * U
     Dfno Detect Unbounded         =                 Yes     * d
     Dfno Objective Limit          =        -1.7977E+308     * d
 End of Options
  ----------------------------------------
   step |    obj        rho    |    nf   |
  ----------------------------------------
      1 |  8.60E+01  2.00E-01  |    11   |
      2 |  5.69E+01  2.00E-01  |    12   |
      3 |  1.79E+01  2.00E-01  |    13   |
      4 |  1.68E+01  2.00E-02  |    17   |
      5 |  1.52E+01  2.00E-02  |    18   |
      6 |  1.04E+01  2.00E-02  |    19   |
      7 |  7.44E+00  2.00E-02  |    22   |
      8 |  6.50E+00  2.00E-02  |    25   |
      9 |  5.89E+00  2.00E-02  |    26   |
     10 |  5.67E+00  2.00E-02  |    27   |
     11 |  5.60E+00  2.00E-02  |    28   |
     12 |  5.40E+00  2.00E-02  |    30   |
     13 |  5.36E+00  2.00E-02  |    31   |
     14 |  4.95E+00  2.00E-02  |    36   |
     15 |  4.19E+00  2.00E-02  |    37   |
     16 |  3.64E+00  2.00E-02  |    38   |
     17 |  3.45E+00  2.00E-02  |    40   |
     18 |  2.94E+00  2.00E-02  |    41   |
     19 |  2.82E+00  2.00E-02  |    42   |
     20 |  2.69E+00  2.00E-02  |    48   |
  ----------------------------------------
   step |    obj        rho    |    nf   |
  ----------------------------------------
     21 |  2.60E+00  2.00E-02  |    49   |
     22 |  2.53E+00  2.00E-02  |    51   |
     23 |  2.50E+00  2.00E-02  |    52   |
     24 |  2.49E+00  2.00E-02  |    53   |
     25 |  2.49E+00  2.00E-02  |    56   |
     26 |  2.48E+00  2.00E-02  |    58   |
     27 |  2.45E+00  2.00E-02  |    59   |
     28 |  2.44E+00  2.00E-02  |    60   |
     29 |  2.43E+00  2.00E-02  |    63   |
     30 |  2.43E+00  2.00E-03  |    64   |
     31 |  2.43E+00  2.00E-03  |    65   |
     32 |  2.43E+00  2.00E-04  |    70   | s
     33 |  2.43E+00  2.00E-04  |    71   | s
     34 |  2.43E+00  3.16E-05  |    78   | s
  ----------------------------------------
  Status: Converged, small trust region size
 
  Value of the objective                    2.43379E+00
  Number of objective function evaluations           87
  Number of steps                                    34
 
 
 Primal variables:
   idx   Lower bound        Value      Upper bound
     1   1.00000E+00    1.00000E+00    3.00000E+00
     2  -2.00000E+00   -8.52342E-02    0.00000E+00
     3       -inf       4.09304E-01         inf
     4   1.00000E+00    1.00000E+00    3.00000E+00