E04FGF Example Program Results --------------------------------------------------- E04F(G|F)), Derivative free solver for data fitting (nonlinear least-squares problems) --------------------------------------------------- Problem statistics Number of variables 2 Number of unconstrained variables 0 Number of fixed variables 0 Starting interpolation points 3 Total interpolation points 3 Number of residuals 2 Begin of Options Print File = 6 * d Print Level = 2 * d Print Options = Yes * d Print Solution = All * U Monitoring File = -1 * d Monitoring Level = 4 * d Dfo Print Frequency = 1 * d Dfo Monitor Frequency = 0 * d Infinite Bound Size = 1.00000E+20 * d Stats Time = No * d Time Limit = 1.00000E+06 * d Dfo Initial Interp Points = Coordinate * d Dfo Max Objective Calls = 500 * d Dfo Max Soft Restarts = 5 * d Dfo Max Unsucc Soft Restarts = 3 * d Dfo Maximum Slow Steps = 20 * d Dfo Noise Level = 0.00000E+00 * d Dfo Noisy Problem = No * d Dfo Number Initial Points = 0 * d Dfo Number Interp Points = 0 * d Dfo Number Soft Restarts Pts = 3 * d Dfo Random Seed = -1 * d Dfo Starting Trust Region = 1.00000E-01 * d Dfo Trust Region Slow Tol = 1.02648E-04 * d Dfo Trust Region Tolerance = 5.00000E-06 * U Dfo Version = Latest * d Dfls Small Residuals Tol = 1.08158E-12 * d End of Options ---------------------------------------- step | obj rho | nf | ---------------------------------------- 1 | 4.02E+00 1.00E-01 | 4 | 2 | 3.66E+00 1.00E-01 | 5 | 3 | 3.48E+00 1.00E-01 | 6 | 4 | 2.32E+00 1.00E-01 | 9 | 5 | 1.94E+00 1.00E-01 | 10 | 6 | 1.63E+00 1.00E-01 | 12 | 7 | 9.65E-01 1.00E-01 | 14 | 8 | 7.29E-01 1.00E-01 | 16 | 9 | 4.77E-01 1.00E-01 | 19 | 10 | 1.29E-01 1.00E-01 | 21 | 11 | 5.70E-02 1.00E-01 | 23 | 12 | 2.21E-04 1.00E-01 | 25 | 13 | 1.28E-04 1.00E-02 | 26 | 14 | 1.36E-08 1.00E-03 | 28 | 15 | 1.03E-23 5.00E-06 | 32 | ---------------------------------------- Status: Converged, small residuals Value of the objective 1.03447E-23 Number of objective function evaluations 32 Number of steps 15 Primal variables: idx Lower bound Value Upper bound 1 -1.50000E+00 1.00000E+00 2.00000E+00 2 -2.00000E+00 1.00000E+00 inf