Program f08apfe
! F08APF Example Program Text
! Mark 27.2 Release. NAG Copyright 2021.
! .. Use Statements ..
Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgemqrt, zgeqrt, ztrtrs
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nbmax = 64, nin = 5, nout = 6
! .. Local Scalars ..
Integer :: i, ifail, info, j, lda, ldb, ldt, &
lwork, m, n, nb, nrhs
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), t(:,:), work(:)
Real (Kind=nag_wp), Allocatable :: rnorm(:)
Character (1) :: clabs(1), rlabs(1)
! .. Intrinsic Procedures ..
Intrinsic :: max, min
! .. Executable Statements ..
Write (nout,*) 'F08APF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda = m
ldb = m
nb = min(m,n,nbmax)
ldt = nb
lwork = nb*max(m,n)
Allocate (a(lda,n),b(ldb,nrhs),t(ldt,min(m,n)),work(lwork),rnorm(nrhs))
! Read A and B from data file
Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:nrhs),i=1,m)
! Compute the QR factorization of A
! The NAG name equivalent of zgeqrf is f08apf
Call zgeqrt(m,n,nb,a,lda,t,ldt,work,info)
! Compute C = (C1) = (Q**H)*B, storing the result in B
! (C2)
! The NAG name equivalent of zgemqrt is f08aqf
Call zgemqrt('Left','Conjugate transpose',m,nrhs,n,nb,a,lda,t,ldt,b,ldb, &
work,info)
! Compute least squares solutions by back-substitution in
! R*X = C1
! The NAG name equivalent of ztrtrs is f07tsf
Call ztrtrs('Upper','No transpose','Non-Unit',n,nrhs,a,lda,b,ldb,info)
If (info>0) Then
Write (nout,*) 'The upper triangular factor, R, of A is singular, '
Write (nout,*) 'the least squares solution could not be computed'
Else
! Print least squares solutions
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04dbf('General',' ',n,nrhs,b,ldb,'Bracketed','F7.4', &
'Least squares solution(s)','Integer',rlabs,'Integer',clabs,80,0, &
ifail)
! Compute and print estimates of the square roots of the residual
! sums of squares
! The NAG name equivalent of dznrm2 is f06jjf
Do j = 1, nrhs
rnorm(j) = dznrm2(m-n,b(n+1,j),1)
End Do
Write (nout,*)
Write (nout,*) 'Square root(s) of the residual sum(s) of squares'
Write (nout,99999) rnorm(1:nrhs)
End If
99999 Format (3X,1P,7E11.2)
End Program f08apfe