/* G02DA_T1W_F C++ Header Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
* Mark 27, 2019.
*/
#include <nag.h>
#include <dco.hpp>
#include <nagad.h>
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <string>
#include <nagx04.h>
typedef double DCO_BASE_TYPE;
typedef dco::gt1s<DCO_BASE_TYPE> DCO_MODE;
typedef DCO_MODE::type DCO_TYPE;
using namespace std;
int main(void)
{
int exit_status = 0;
void *ad_handle = 0;
DCO_TYPE tol;
Integer ifail = 0;
cout << "G02DA_T1W_F C++ Header Example Program Results\n\n";
tol = 0.000001;
// Skip heading in data file
string mystr;
getline (cin, mystr);
// Read problem sizes
Integer n, m;
cin >> n;
cin >> m;
// Allocate arrays depending on m and n.
DCO_TYPE *x=0, *y=0, *y_in=0;
Integer *isx=0;
double *dy=0;
x = new DCO_TYPE [m*n];
y = new DCO_TYPE [n];
y_in = new DCO_TYPE [n];
dy = new double [n];
isx = new Integer [m];
// Create AD configuration data object
ifail = 0;
x10aa_t1w_f_(ad_handle,ifail);
// Read model data
double dd;
for (int i = 0; i<n; ++i) {
for (int j = 0; j<m; ++j) {
cin >> dd;
int k = i + j*n;
x[k] = dd;
}
cin >> dd;
y_in[i] = dd;
y[i] = y_in[i];
}
// Calculate ip
Integer ip = 0;
for (int j = 0; j<m; ++j) {
cin >> isx[j];
if (isx[j]>0) {
ip++;
}
}
// Mean = 'M'
ip++;
// Allocate arrays depending on ip
DCO_TYPE *b=0, *cov=0, *h=0, *p=0, *q=0, *res=0, *se=0, *wk=0;
double *dbdy;
Integer lcov = (ip*ip+ip)/2, lp = ip*(ip+2), lq = n*(ip+1);
Integer lwk = ip*ip + 5*(ip-1);
b = new DCO_TYPE [ip];
cov = new DCO_TYPE [lcov];
h = new DCO_TYPE [n];
p = new DCO_TYPE [lp];
q = new DCO_TYPE [lq];
res = new DCO_TYPE [n];
se = new DCO_TYPE [ip];
wk = new DCO_TYPE [lwk];
dbdy = new double [n*ip];
// Perform Regression
Integer idf, irank;
DCO_TYPE rss;
logical svd;
ifail = 0;
g02da_t1w_f_(ad_handle,"M","U",n,x,n,m,isx,ip,y,NULL,rss,idf,
b,se,cov,res,h,q,n,svd,irank,p,tol,wk,ifail,1,1);
// Display results
if (svd) {
cout << "Model is not of full rank, rank = " << irank << endl;
}
cout << "Residual sum of squares = " << dco::value(rss);
cout << "\nDegrees of freedom = " << idf << endl;
cout << "\nVariable Parameter estimate Standard error\n\n";
cout.setf(ios::scientific,ios::floatfield);
cout.precision(2);
for (int i=0; i < ip; ++i) {
cout.width(5); cout << i << " ";
cout.width(12); cout << dco::value(b[i]) << " ";
cout.width(12); cout << dco::value(se[i]) << endl;
}
cout << "\n\n Derivatives calculated: First order tangents\n";
cout << " Computational mode : algorithmic\n";
cout << "\n Derivatives:\n\n";
// Obtain derivatives
for (int i = 0; i < n; i++) {
y[i] = y_in[i];
}
for (int i = 0; i < n; i++) {
dco::derivative(y[i]) = 1.0;
g02da_t1w_f_(ad_handle,"M","U",n,x,n,m,isx,ip,y,NULL,rss,idf,
b,se,cov,res,h,q,n,svd,irank,p,tol,wk,ifail,1,1);
dy[i] = dco::derivative(rss);
for (int j=0; j<ip; j++) {
int k = i + j*n;
dbdy[k] = dco::derivative(b[j]);
}
for (int j=0; j<n; ++j) {
y[j] = y_in[j];
}
}
cout << " i d(rss)/dy(i)\n";
cout.precision(4);
for (int i=0; i<n; ++i) {
cout.width(5); cout << i << " ";
cout.width(12); cout << dy[i] << endl;
}
// Print matrix routine
cout << endl;
NagError fail;
INIT_FAIL(fail);
x04cac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,n,ip,dbdy,n,
"db/dy",0,&fail);
// Remove computational data object
ifail = 0;
x10ab_t1w_f_(ad_handle,ifail);
delete [] b;
delete [] cov;
delete [] h;
delete [] p;
delete [] q;
delete [] res;
delete [] se;
delete [] wk;
delete [] dbdy;
delete [] x;
delete [] y;
delete [] y_in;
delete [] dy;
delete [] isx;
return exit_status;
}