Program f12aufe
! F12AUF Example Program Text
! Mark 27.1 Release. NAG Copyright 2020.
! .. Use Statements ..
Use nag_library, Only: dznrm2, f12arf, f12atf, f12auf, nag_wp, x04abf, &
x04caf, zaxpy, zgbmv
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: iset = 1, nin = 5, nout = 6
Logical, Parameter :: printr = .False.
! .. Local Scalars ..
Complex (Kind=nag_wp) :: ch, sigma
Real (Kind=nag_wp) :: h, rho
Integer :: i, idiag, ifail, isub, isup, j, kl, &
ku, lcomm, ldab, ldmb, ldv, licomm, &
lo, n, ncol, nconv, ncv, nev, nx, &
outchn
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: ab(:,:), ax(:), comm(:), d(:), &
mb(:,:), mx(:), resid(:), v(:,:)
Real (Kind=nag_wp), Allocatable :: d_print(:,:)
Integer, Allocatable :: icomm(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, aimag, cmplx, int, max, real
! .. Executable Statements ..
Write (nout,*) 'F12AUF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) nx, nev, ncv
Read (nin,*) sigma
n = nx*nx
! Initialize communication arrays.
! Query the required sizes of the communication arrays.
licomm = -1
lcomm = -1
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))
ifail = 0
Call f12atf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)
licomm = icomm(1)
lcomm = int(comm(1))
Deallocate (icomm,comm)
Allocate (icomm(max(1,licomm)),comm(max(1,lcomm)))
ifail = 0
Call f12atf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)
! Set the mode.
ifail = 0
Call f12arf('SHIFTED INVERSE',icomm,comm,ifail)
! Set problem type
ifail = 0
Call f12arf('GENERALIZED',icomm,comm,ifail)
! Construct the matrix A in banded form and store in AB.
! KU, KL are number of superdiagonals and subdiagonals within
! the band of matrices A and M.
kl = nx
ku = nx
ldab = 2*kl + ku + 1
ldmb = 2*kl + ku + 1
Allocate (ab(ldab,n),mb(ldmb,n))
! Zero out AB and MB.
ab(1:ldab,1:n) = zero
mb(1:ldmb,1:n) = zero
! Main diagonal of A.
idiag = kl + ku + 1
ab(idiag,1:n) = cmplx(4.0_nag_wp,0.0_nag_wp,kind=nag_wp)
mb(idiag,1:n) = ab(idiag,1)
! First subdiagonal and superdiagonal of A.
isup = kl + ku
isub = kl + ku + 2
rho = 100.0_nag_wp
h = 1._nag_wp/real(nx+1,kind=nag_wp)
ch = cmplx(0.5_nag_wp*h*rho,0.0_nag_wp,kind=nag_wp)
Do i = 1, nx
lo = (i-1)*nx
Do j = lo + 1, lo + nx - 1
ab(isub,j+1) = -one + ch
ab(isup,j) = -one - ch
End Do
End Do
mb(isub,2:n) = one
mb(isup,1:n-1) = one
! KL-th subdiagonal and KU-th superdiagonal.
isup = kl + 1
isub = 2*kl + ku + 1
Do i = 1, nx - 1
lo = (i-1)*nx
Do j = lo + 1, lo + nx
ab(isup,nx+j) = -one
ab(isub,j) = -one
End Do
End Do
! Find eigenvalues closest in value to SIGMA and corresponding
! eigenvectors.
ldv = n
Allocate (d(nev),v(ldv,ncv),resid(n))
ifail = -1
Call f12auf(kl,ku,ab,ldab,mb,ldmb,sigma,nconv,d,v,ldv,resid,v,ldv,comm, &
icomm,ifail)
If (ifail/=0) Then
Go To 100
End If
! Compute the residual norm ||A*x - lambda*x||.
Allocate (ax(n),mx(n),d_print(nconv,3))
d_print(1:nconv,1) = real(d(1:nconv))
d_print(1:nconv,2) = aimag(d(1:nconv))
Do j = 1, nconv
! The NAG name equivalent of zgbmv is f06sbf
Call zgbmv('N',n,n,kl,ku,one,ab(kl+1,1),ldab,v(1,j),1,zero,ax,1)
Call zgbmv('N',n,n,kl,ku,one,mb(kl+1,1),ldmb,v(1,j),1,zero,mx,1)
Call zaxpy(n,-d(j),mx,1,ax,1)
d_print(j,3) = dznrm2(n,ax,1)/abs(d(j))
End Do
Write (nout,*)
Flush (nout)
outchn = nout
Call x04abf(iset,outchn)
If (printr) Then
! Print residual associated with each Ritz value.
ncol = 3
Else
ncol = 2
End If
ifail = 0
Call x04caf('G','N',nconv,ncol,d_print,nconv, &
' Ritz values closest to sigma',ifail)
100 Continue
End Program f12aufe