Program f07qpfe
! F07QPF Example Program Text
! Mark 27.1 Release. NAG Copyright 2020.
! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zspsvx
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = 'U'
! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond
Integer :: i, ifail, info, j, ldb, ldx, n, nrhs
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: afp(:), ap(:), b(:,:), work(:), &
x(:,:)
Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
Integer, Allocatable :: ipiv(:)
Character (1) :: clabs(1), rlabs(1)
! .. Executable Statements ..
Write (nout,*) 'F07QPF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
ldx = n
Allocate (afp((n*(n+1))/2),ap((n*(n+1))/2),b(ldb,nrhs),work(2*n),x(ldx, &
nrhs),berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))
! Read the upper or lower triangular part of the matrix A from
! data file
If (uplo=='U') Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Else If (uplo=='L') Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
End If
! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)
! Solve the equations AX = B for X
! The NAG name equivalent of zspsvx is f06qpf
Call zspsvx('Not factored',uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,rcond, &
ferr,berr,work,rwork,info)
If ((info==0) .Or. (info==n+1)) Then
! Print solution, error bounds and condition number
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04dbf('General',' ',n,nrhs,x,ldx,'Bracketed','F7.4', &
'Solution(s)','Integer',rlabs,'Integer',clabs,80,0,ifail)
Write (nout,*)
Write (nout,*) 'Backward errors (machine-dependent)'
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) 'Estimated forward error bounds (machine-dependent)'
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) 'Estimate of reciprocal condition number'
Write (nout,99999) rcond
Write (nout,*)
If (info==n+1) Then
Write (nout,*)
Write (nout,*) 'The matrix A is singular to working precision'
End If
Else
Write (nout,99998) 'The diagonal block ', info, ' of D is zero'
End If
99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)
End Program f07qpfe