/* F07AR_T1W_F C++ Header Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
* Mark 27, 2019.
*/
#include <dco_light.hpp>
#include <nag.h>
#include <nagx04.h>
#include <nagad.h>
#include <stdio.h>
#include <string>
#include <iostream>
using namespace std;
int main(void)
{
int exit_status = 0;
void *ad_handle = 0;
Integer ifail = 0;
cout << "F07AR_T1W_F C++ Header Example Program Results\n\n";
// Skip heading in data file
string mystr;
getline (cin, mystr);
// Read problem size and number of right-hand-sides
Integer n;
cin >> n;
// Allocate arrays containing A and its factorized form, B
// and the solution X.
nagad_t1w_w_ctype *a=0, *a_in=0, *work=0;
nagad_t1w_w_rtype *a_r=0, *a_i=0;
Complex *ar=0, *drda=0, *dida=0;
Integer *ipiv=0;
Integer lwork = 64*n;
a = new nagad_t1w_w_ctype [n*n];
a_in = new nagad_t1w_w_ctype [n*n];
a_r = new nagad_t1w_w_rtype [n*n];
a_i = new nagad_t1w_w_rtype [n*n];
work = new nagad_t1w_w_ctype [lwork];
ipiv = new Integer [n];
ar = new Complex [n*n];
drda = new Complex [n*n];
dida = new Complex [n*n];
// Read the matrix A, register and copy
double dr, di;
for (int i = 0; i<n; ++i) {
for (int j = 0; j<n; ++j) {
Integer k = i + j*n;
cin >> dr >> di;
a_r[k] = dr;
a_i[k] = di;
ar[k].re = dr;
ar[k].im = di;
}
}
// Print matrix A
NagError fail;
INIT_FAIL(fail);
x04dac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,n,n,ar,n,
" A",0,&fail);
// Create AD configuration data object
ifail = 0;
x10aa_t1w_f_(ad_handle,ifail);
for (int i=0; i<2*n; ++i) {
Integer k;
double inc = 1.0;
if (i<n) {
k = i*(n+1);
nagad_t1w_inc_derivative(&a_r[k],inc);
} else {
k = (i-n)*(n+1);
nagad_t1w_inc_derivative(&a_i[k],inc);
}
for (int j=0; j<n*n; ++j) {
a[j].real(a_r[j]);
a[j].imag(a_i[j]);
}
// Factorize the matrix A
ifail = 0;
f07ar_t1w_f_(ad_handle,n,n,a,n,ipiv,ifail);
// Invert A
ifail = 0;
f07aw_t1w_f_(ad_handle,n,a,n,ipiv,work,lwork,ifail);
double zero = 0.0;
if (i<n) {
nagad_t1w_set_derivative(&a_r[k],zero);
} else {
nagad_t1w_set_derivative(&a_i[k],zero);
}
for (int j=0; j<n; j++) {
nagad_t1w_w_rtype dar, dai;
Integer p = j + j*n;
dar = real(a[p]);
dai = imag(a[p]);
double da = nagad_t1w_get_derivative(dar);
double di = nagad_t1w_get_derivative(dai);
if (i<n) {
Integer l = j + i*n;
drda[l].re = da;
drda[l].im = di;
} else {
Integer l = j + (i-n)*n;
dida[l].re = da;
dida[l].im = di;
}
}
}
// Print Inverse
for (int i = 0; i<n*n; i++) {
nagad_t1w_w_rtype akr, aki;
akr = real(a[i]);
aki = imag(a[i]);
ar[i].re = nagad_t1w_get_value(akr);
ar[i].im = nagad_t1w_get_value(aki);
}
cout << endl;
// NagError fail;
INIT_FAIL(fail);
x04dac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,n,n,ar,n,
" Inverse",0,&fail);
cout << "\n\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
cout << "\n Derivatives of inverse diagonal w.r.t diagonal of A:\n";
// Print derivatives
cout << endl;
INIT_FAIL(fail);
x04dac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,n,n,drda,n,
" d(real(ai(i,i)))/da(j,j)",0,&fail);
cout << endl;
INIT_FAIL(fail);
x04dac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,n,n,dida,n,
" d(real(ai(i,i)))/da(j,j)",0,&fail);
// Remove computational data object
ifail = 0;
x10ab_t1w_f_(ad_handle,ifail);
delete [] a;
delete [] a_in;
delete [] a_r;
delete [] a_i;
delete [] work;
delete [] ipiv;
delete [] ar;
delete [] drda;
delete [] dida;
return exit_status;
}