/* F03BN_A1W_F C++ Header Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
* Mark 27, 2019.
*/
#include <dco.hpp>
#include <nag.h>
#include <nagx04.h>
#include <nagad.h>
#include <stdio.h>
#include <string>
#include <iostream>
using namespace std;
int main(void)
{
int exit_status = 0;
void *ad_handle = 0;
Integer ifail = 0;
cout << "F03BN_A1W_F C++ Header Example Program Results\n\n";
// Skip heading in data file
string mystr;
getline (cin, mystr);
// Read problem size and number of right-hand-sides
Integer n;
cin >> n;
// Allocate arrays containing A and its factorized form, B
// and the solution X.
nagad_a1w_w_ctype *a=0, *a_in=0;
nagad_a1w_w_rtype *a_r=0, *a_i=0;
Complex *ar=0;
Integer *ipiv=0;
a = new nagad_a1w_w_ctype [n*n];
a_in = new nagad_a1w_w_ctype [n*n];
a_r = new nagad_a1w_w_rtype [n*n];
a_i = new nagad_a1w_w_rtype [n*n];
ipiv = new Integer [n];
ar = new Complex [n*n];
// Create AD tape
nagad_a1w_ir_create();
// Read the matrix A, register and copy
double dr, di;
Complex dc;
for (int i = 0; i<n; ++i) {
for (int j = 0; j<n; ++j) {
cin >> dr >> di;
Integer k = i + j*n;
a_r[k] = dr;
a_i[k] = di;
nagad_a1w_ir_register_variable(&a_r[k]);
nagad_a1w_ir_register_variable(&a_i[k]);
a[k].real(a_r[k]);
a[k].imag(a_i[k]);
ar[k].re = dr;
ar[k].im = di;
}
}
// Print matrix A
cout << endl;
NagError fail;
INIT_FAIL(fail);
x04dac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,n,n,ar,n,
" A",0,&fail);
// Create AD configuration data object
ifail = 0;
x10aa_a1w_f_(ad_handle,ifail);
// Factorize the matrix A
ifail = 0;
f07ar_a1w_f_(ad_handle,n,n,a,n,ipiv,ifail);
// Print Factorization of A
for (int i = 0; i<n; i++) {
for (int j = 0; j<n; j++) {
int k = i + j*n;
nagad_a1w_w_rtype akr, aki;
akr = real(a[k]);
aki = imag(a[k]);
ar[k].re = nagad_a1w_get_value(akr);
ar[k].im = nagad_a1w_get_value(aki);
}
}
cout << endl;
// NagError fail;
INIT_FAIL(fail);
x04dac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,n,n,ar,n,
" Array A after factorization",0,&fail);
nagad_a1w_w_ctype d;
Integer id[2];
ifail = 0;
f03bn_a1w_f_(ad_handle,n,a,n,ipiv,d,id,ifail);
nagad_a1w_w_rtype dcr, dci;
dcr = real(d);
dci = imag(d);
dr = nagad_a1w_get_value(dcr);
di = nagad_a1w_get_value(dci);
cout << " d = (" << dr << "," << di << ") id = ";
cout << id[0] << ", " << id[1] << endl;
dr = dr*pow(2.0,id[0]);
di = di*pow(2.0,id[1]);
cout << "\n value of determinant = (" << dr << "," << di << ")" << endl;
cout << "\n\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
cout << "\n Derivatives of real(d) w.r.t A:\n";
// Obtain derivatives
double inc = 1.0;
nagad_a1w_w_rtype dt;
dt = real(d);
nagad_a1w_inc_derivative(&dt,inc);
ifail = 0;
nagad_a1w_ir_interpret_adjoint(ifail);
for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
Integer k = i + j*n;
double dr = nagad_a1w_get_derivative(a_r[k]);
double di = nagad_a1w_get_derivative(a_i[k]);
ar[k].re = dr;
ar[k].im = di;
}
}
// Print derivatives
cout << endl;
INIT_FAIL(fail);
x04dac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,n,n,ar,n,
" d(dreal)/da(i,j)",0,&fail);
END:
// Remove computational data object and tape
ifail = 0;
x10ab_a1w_f_(ad_handle,ifail);
nagad_a1w_ir_remove();
return exit_status;
}