/* E02DE_A1W_F C++ Header Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
* Mark 27, 2019.
*/
#include <nag.h>
#include <nagad.h>
#include <stdio.h>
#include <math.h>
#include <nagx04.h>
#include <string>
#include <iostream>
using namespace std;
int main(void)
{
// Scalars
int exit_status = 0;
cout << "E02DE_A1W_F C++ Header Example Program Results\n\n";
// Skip first line of data file
string mystr;
getline (cin, mystr);
// Read number of x and y data points
Integer mx, my;
cin >> mx;
cin >> my;
// Allocate arrays for data and interpolant
nagad_a1w_w_rtype *x = 0, *lamda = 0, *y = 0, *mu = 0, *f = 0, *c = 0,
*wrk = 0;
double *dx = 0, *dy = 0, *df = 0;
Integer *iwrk = 0;
Integer lwrk = (my+6)*(mx+6);
if (!(x = NAG_ALLOC(mx, nagad_a1w_w_rtype)) ||
!(y = NAG_ALLOC(my, nagad_a1w_w_rtype)) ||
!(lamda = NAG_ALLOC(mx+4, nagad_a1w_w_rtype)) ||
!(mu = NAG_ALLOC(my+4, nagad_a1w_w_rtype)) ||
!(f = NAG_ALLOC(my*mx, nagad_a1w_w_rtype)) ||
!(c = NAG_ALLOC(my*mx, nagad_a1w_w_rtype)) ||
!(wrk = NAG_ALLOC(lwrk, nagad_a1w_w_rtype)) ||
!(dx = NAG_ALLOC(mx, double)) ||
!(dy = NAG_ALLOC(my, double)) ||
!(df = NAG_ALLOC(my*mx, double)) ||
!(iwrk = NAG_ALLOC(lwrk, Integer))) {
printf("Allocation failure\n");
exit_status = -2;
}
if (exit_status==0) {
// Create AD tape
nagad_a1w_ir_create();
// Create AD configuration data object
Integer ifail = 0;
void *ad_handle = 0;
x10aa_a1w_f_(ad_handle,ifail);
// Read data and register variables
for (int i=0; i<mx; i++) {
double xr;
cin >> xr;
x[i].value = xr;
x[i].id = 0;
nagad_a1w_ir_register_variable(&x[i]);
}
for (int i=0; i<my; i++) {
double yr;
cin >> yr;
y[i].value = yr;
y[i].id = 0;
nagad_a1w_ir_register_variable(&y[i]);
}
for (int i=0; i<my; i++) {
double fr;
for (int j=0; j<mx; j++) {
Integer k = j*my + i;
cin >> fr;
f[k].value = fr;
f[k].id = 0;
nagad_a1w_ir_register_variable(&f[k]);
}
}
// Call the AD routine
Integer px, py;
ifail = 0;
e01da_a1w_f_(ad_handle,mx,my,x,y,f,px,py,lamda,mu,c,wrk,ifail);
// Evaluate interpolant and derivatives at an internal point
const Integer m = 1;
nagad_a1w_w_rtype tx[m], ty[m], ff[m];
tx[0].value = 1.4;
tx[0].id = 0;
ty[0].value = 0.5;
ty[0].id = 0;
ifail = 0;
e02de_a1w_f_(ad_handle,m,px,py,tx,ty,lamda,mu,c,ff,wrk,iwrk,ifail);
cout << "\n Interpolant evaluated at x = " << nagad_a1w_get_value(tx[0]);
cout << " and y = " << nagad_a1w_get_value(ty[0]);
cout.precision(5);
cout << "\n Value of interpolant = ";
cout << nagad_a1w_get_value(ff[0]) << endl;
// Setup evaluation of derivatives via adjoints.
double inc = 1.0;
nagad_a1w_inc_derivative(&ff[0],inc);
ifail = 0;
nagad_a1w_ir_interpret_adjoint(ifail);
cout << "\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
// Get derivatives
cout << "\n Derivatives of fitted value w.r.t. data points:\n\n";
for (int j=0; j < mx; j++) {
dx[j] = nagad_a1w_get_derivative(x[j]);
}
for (int j=0; j < my; j++) {
dy[j] = nagad_a1w_get_derivative(y[j]);
}
for (int j=0; j < my*mx; j++) {
df[j] = nagad_a1w_get_derivative(f[j]);
}
cout << endl;
NagError fail;
INIT_FAIL(fail);
x04cac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,1,mx,dx,1,
" d/dx",0,&fail);
cout << endl;
x04cac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,1,my,dy,1,
" d/dy",0,&fail);
cout << endl;
x04cac(Nag_ColMajor,Nag_GeneralMatrix,Nag_NonUnitDiag,my,mx,df,my,
" d/df",0,&fail);
// Remove computational data object and tape
x10ab_a1w_f_(ad_handle,ifail);
nagad_a1w_ir_remove();
}
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(lamda);
NAG_FREE(mu);
NAG_FREE(f);
NAG_FREE(c);
NAG_FREE(wrk);
NAG_FREE(dx);
NAG_FREE(dy);
NAG_FREE(df);
NAG_FREE(iwrk);
return exit_status;
}