/* nag_inteq_fredholm2_split (d05aac) Example Program.
*
* Copyright 2020 Numerical Algorithms Group.
*
* Mark 27.1, 2020.
*/
#include <math.h>
#include <nag.h>
#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL k1(double x, double s, Nag_Comm *comm);
static double NAG_CALL k2(double x, double s, Nag_Comm *comm);
static double NAG_CALL g(double x, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
int main(void) {
/* Scalars */
double a = 0.0, b = 1.0, lambda = 1.0, x = 0.1;
double res;
Integer exit_status = 0;
Integer n = 5;
Integer i;
/* Arrays */
static double ruser[3] = {-1.0, -1.0, -1.0};
double *c = 0, *f = 0;
/* NAG types */
Nag_Comm comm;
NagError fail;
Nag_KernelForm kform = Nag_CentroSymmEven;
Nag_Series s = Nag_SeriesEven;
INIT_FAIL(fail);
printf("nag_inteq_fredholm2_split (d05aac) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
if (!(f = NAG_ALLOC(n, double)) || !(c = NAG_ALLOC(n, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/*
nag_inteq_fredholm2_split (d05aac).
Linear non-singular Fredholm integral equation, second kind, split kernel.
*/
nag_inteq_fredholm2_split(lambda, a, b, n, k1, k2, g, kform, f, c, &comm,
&fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_inteq_fredholm2_split (d05aac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nKernel is centro-symmetric and g is even, "
"so the solution is even\n\n");
printf("Chebyshev coefficients of the approximation to f(x)\n\n");
for (i = 0; i < n; i++)
printf("%14.4e", c[i]);
printf("\n\n");
/*
nag_sum_chebyshev (c06dcc).
Sum of a Chebyshev series at a set of points.
*/
nag_sum_chebyshev(&x, 1, a, b, c, n, s, &res, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sum_chebyshev (c06dcc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf(" Solution: x = %5.2f and f(x) = %10.4f\n", x, res);
END:
NAG_FREE(c);
NAG_FREE(f);
return exit_status;
}
static double NAG_CALL k1(double x, double s, Nag_Comm *comm) {
if (comm->user[0] == -1.0) {
printf("(User-supplied callback k1, first invocation.)\n");
comm->user[0] = 0.0;
}
return s * (1.0 - x);
}
static double NAG_CALL k2(double x, double s, Nag_Comm *comm) {
if (comm->user[1] == -1.0) {
printf("(User-supplied callback k2, first invocation.)\n");
comm->user[1] = 0.0;
}
return x * (1.0 - s);
}
static double NAG_CALL g(double x, Nag_Comm *comm) {
if (comm->user[2] == -1.0) {
printf("(User-supplied callback g, first invocation.)\n");
comm->user[2] = 0.0;
}
return (1.0 - 1.0 / pow(nag_math_pi, 2)) * sin(nag_math_pi * x);
}