/* nag_pde_dim1_blackscholes_closed (d03ndc) Example Program.
*
* Copyright 2020 Numerical Algorithms Group.
*
* Mark 27.1, 2020.
*/
#include <math.h>
#include <nag.h>
#include <stdio.h>
#include <string.h>
#define F(I, J) f[ns * ((J)-1) + (I)-1]
#define THETA(I, J) theta[ns * ((J)-1) + (I)-1]
#define DELTA(I, J) delta[ns * ((J)-1) + (I)-1]
#define GAMMA(I, J) gamma[ns * ((J)-1) + (I)-1]
#define LAMBDA(I, J) lambda[ns * ((J)-1) + (I)-1]
#define RHO(I, J) rho[ns * ((J)-1) + (I)-1]
int main(void) {
double ds, dt, tmat, x;
Integer i, igreek, j, ns, nt, exit_status = 0;
double *delta = 0, *f = 0, *gamma = 0, *lambda = 0, q[3], r[3], *rho = 0,
*s = 0;
double sigma[3], *t = 0, *theta = 0, smin, smax, tmin, tmax;
Nag_Boolean gprnt[5] = {Nag_TRUE, Nag_TRUE, Nag_TRUE, Nag_TRUE, Nag_TRUE};
Nag_Boolean tdpar[3];
const char *gname[5] = {"Theta", "Delta", "Gamma", "Lambda", "Rho"};
NagError fail;
INIT_FAIL(fail);
printf(
"nag_pde_dim1_blackscholes_closed (d03ndc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Read problem parameters */
scanf("%lf", &x);
scanf("%lf", &tmat);
scanf("%lf", &r[0]);
scanf("%lf", &q[0]);
scanf("%lf", &sigma[0]);
scanf("%" NAG_IFMT "%" NAG_IFMT "", &ns, &nt);
scanf("%lf%lf", &smin, &smax);
scanf("%lf%lf", &tmin, &tmax);
/* Allocate memory */
if (!(s = NAG_ALLOC(ns, double)) || !(t = NAG_ALLOC(nt, double)) ||
!(f = NAG_ALLOC(ns * nt, double)) ||
!(theta = NAG_ALLOC(ns * nt, double)) ||
!(delta = NAG_ALLOC(ns * nt, double)) ||
!(gamma = NAG_ALLOC(ns * nt, double)) ||
!(lambda = NAG_ALLOC(ns * nt, double)) ||
!(rho = NAG_ALLOC(ns * nt, double))) {
printf("Allocation failure\n");
exit_status = 1;
goto END;
}
/* Set up input parameters for nag_pde_dim1_blackscholes_fd (d03ncc) */
s[0] = smin;
s[ns - 1] = smax;
t[0] = tmin;
t[nt - 1] = tmax;
tdpar[0] = Nag_FALSE;
tdpar[1] = Nag_FALSE;
tdpar[2] = Nag_FALSE;
ds = (s[ns - 1] - s[0]) / (ns - 1.0);
dt = (t[nt - 1] - t[0]) / (nt - 1.0);
/* Loop over times */
for (j = 1; j <= nt; j++) {
t[j - 1] = t[0] + (j - 1) * dt;
/* Loop over stock prices */
for (i = 1; i <= ns; i++) {
s[i - 1] = s[0] + (i - 1) * ds;
/* Evaluate analytic solution of Black-Scholes equation */
/* nag_pde_dim1_blackscholes_closed (d03ndc).
* Analytic solution of the Black-Scholes equations
*/
nag_pde_dim1_blackscholes_closed(Nag_AmericanCall, x, s[i - 1], t[j - 1],
tmat, tdpar, r, q, sigma, &F(i, j),
&THETA(i, j), &DELTA(i, j), &GAMMA(i, j),
&LAMBDA(i, j), &RHO(i, j), &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_pde_dim1_blackscholes_closed (d03ndc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
}
}
/* Output option values */
printf("\n");
printf("Option Values\n");
printf("-------------\n");
printf("%14s | %s\n", "Stock Price", "Time to Maturity (months)");
printf("%14s | ", "");
for (i = 0; i < nt; i++)
printf(" %13.4e", 12.0 * (tmat - t[i]));
printf("\n");
for (i = 0; i < 74; i++)
printf("-");
printf("\n");
for (i = 1; i <= ns; i++) {
printf(" %13.4e | ", s[i - 1]);
for (j = 1; j <= nt; j++)
printf(" %13.4e", F(i, j));
printf("\n");
}
for (igreek = 0; igreek < 5; igreek++) {
if (!gprnt[igreek])
continue;
printf("\n");
printf("%s\n", gname[igreek]);
for (i = 0; i < (Integer)strlen(gname[igreek]); i++)
printf("-");
printf("\n");
printf("%14s | %s\n", "Stock Price", "Time to Maturity (months)");
printf("%14s | ", "");
for (i = 0; i < nt; i++)
printf(" %13.4e", 12.0 * (tmat - t[i]));
printf("\n");
for (i = 0; i < 74; i++)
printf("-");
printf("\n");
for (i = 1; i <= ns; i++) {
printf(" %13.4e | ", s[i - 1]);
switch (igreek) {
case 0:
for (j = 1; j <= nt; j++)
printf(" %13.4e", THETA(i, j));
break;
case 1:
for (j = 1; j <= nt; j++)
printf(" %13.4e", DELTA(i, j));
break;
case 2:
for (j = 1; j <= nt; j++)
printf(" %13.4e", GAMMA(i, j));
break;
case 3:
for (j = 1; j <= nt; j++)
printf(" %13.4e", LAMBDA(i, j));
break;
case 4:
for (j = 1; j <= nt; j++)
printf(" %13.4e", RHO(i, j));
break;
default:
break;
}
printf("\n");
}
}
END:
NAG_FREE(s);
NAG_FREE(t);
NAG_FREE(f);
NAG_FREE(theta);
NAG_FREE(delta);
NAG_FREE(gamma);
NAG_FREE(lambda);
NAG_FREE(rho);
return exit_status;
}