/* D02PU_T1W_F C++ Header Example Program.
*
* Copyright 2020 Numerical Algorithms Group.
*
* Mark 27.1, 2020.
*/
#include <nag.h>
#include <dco.hpp>
#include <nagad.h>
#include <math.h>
#include <stdio.h>
#include <iostream>
using namespace std;
#ifdef __cplusplus
extern "C"
{
#endif
static void NAG_CALL f(void * &ad_handle, const nagad_t1w_w_rtype &t,
const Integer &n, const nagad_t1w_w_rtype y[],
nagad_t1w_w_rtype yp[],
Integer iuser[], nagad_t1w_w_rtype ruser[]);
#ifdef __cplusplus
}
#endif
int main(void)
{
const Integer n = 4;
const Integer liwsav = 130;
const Integer lrwsav = 350 + 32 * n;
Integer exit_status = 0;
nagad_t1w_w_rtype *rwsav = 0, *thresh = 0, *ygot = 0, *ymax = 0;
nagad_t1w_w_rtype *ypgot = 0, *y = 0, ruser[1];
Integer *iwsav = 0, iuser[1];
nagad_t1w_w_rtype *rmserr = 0;
cout << "D02PU_T1W_F C++ Header Example Program Results\n\n";
thresh = new nagad_t1w_w_rtype [n];
ygot = new nagad_t1w_w_rtype [n];
y = new nagad_t1w_w_rtype [n];
ypgot = new nagad_t1w_w_rtype [n];
ymax = new nagad_t1w_w_rtype [n];
iwsav = new Integer [liwsav];
rwsav = new nagad_t1w_w_rtype [lrwsav];
rmserr = new nagad_t1w_w_rtype [n];
// Set initial conditions for ODE and parameters for the integrator.
Integer method = 3;
nagad_t1w_w_rtype tol, hstart, tend, tstart, eps;
eps = 0.7;
tstart = 0.0;
tol = 1.0e-6;
tend = 3.0*nag_math_pi;
hstart = 0.0;
for (int i = 0; i < n; ++i) {
thresh[i] = 1.0e-10;
}
{
double tolr = nagad_t1w_get_value(tol);
cout << "\n Calculation with tol = " << tolr << endl;
}
cout.setf(ios::fixed);
cout.setf(ios::right);
cout.precision(3);
{
double t = nagad_t1w_get_value(tstart);
cout << "\n t y1 y2 y3 y4" << endl;
cout.width(6); cout << t;
}
// Create AD configuration data object
Integer ifail = 0;
void *ad_handle = 0;
x10aa_t1w_f_(ad_handle,ifail);
double inc = 1.0;
nagad_t1w_inc_derivative(&eps,inc);
y[0] = 1.0 - eps;
y[1] = 0.0;
y[2] = 0.0;
y[3] = sqrt((1.0+eps)/(1.0-eps));
for (int k = 0; k < n; k++) {
double yr = nagad_t1w_get_value(y[k]);
cout.width(11); cout << yr;
}
cout << endl;
// Initialize Runge-Kutta method for integrating ODE
ifail = 0;
d02pq_t1w_f_(ad_handle,n,tstart,tend,y,tol,thresh,method,hstart,
iwsav,rwsav,ifail);
nagad_t1w_w_rtype tgot, twant;
twant = tend;
ifail = 2;
while (ifail>1 && ifail<5) {
ifail = -1;
d02pe_t1w_f_(ad_handle,f,n,twant,tgot,ygot,ypgot,ymax,iuser,ruser,
iwsav,rwsav,ifail);
}
if (ifail==0) {
cout.width(6); cout << nagad_t1w_get_value(tgot);
for (int k = 0; k < n; ++k) {
cout.width(11); cout << nagad_t1w_get_value(ygot[k]);
}
cout << endl;
// Get Error estimates
nagad_t1w_w_rtype errmax, terrmx;
ifail = 0;
d02pu_t1w_f_(ad_handle,n,rmserr,errmax,terrmx,iwsav,rwsav,ifail);
cout.setf(ios::scientific,ios::floatfield);
cout.precision(2);
cout << "\n Componentwise error assessment\n ";
for (int k = 0; k < n; ++k) {
cout.width(11); cout << nagad_t1w_get_value(rmserr[k]);
}
cout << endl;
cout.precision(3);
cout << "\n Worst global error observed was ";
cout.width(9); cout << nagad_t1w_get_value(errmax) << endl;
cout << " it occurred at T = ";
cout.width(8); cout << nagad_t1w_get_value(terrmx) << endl;
nagad_t1w_w_rtype hnext, waste;
Integer fevals, stepcost, stepsok;
ifail = 0;
d02pt_t1w_f_(ad_handle,fevals,stepcost,waste,stepsok,hnext,iwsav,
rwsav,ifail);
cout << "\n Cost of the integration in evaluations of f is " << fevals;
cout << endl;
cout << "\n Derivatives calculated: First order tangents\n";
cout << " Computational mode : algorithmic\n";
// Get derivatives
cout << "\n Derivatives: (solution w.r.t. eps)\n";
cout.setf(ios::scientific,ios::floatfield);
cout.precision(4);
double deps;
deps = nagad_t1w_get_derivative(ygot[0]);
cout << " dy(t)/deps = ";
cout.width(12); cout << deps << endl;
}
x10ab_t1w_f_(ad_handle,ifail);
delete [] thresh;
delete [] ygot;
delete [] y;
delete [] ypgot;
delete [] ymax;
delete [] iwsav;
delete [] rwsav;
delete [] rmserr;
return exit_status;
}
static void NAG_CALL f(void * &ad_handle, const nagad_t1w_w_rtype &t,
const Integer &n, const nagad_t1w_w_rtype y[],
nagad_t1w_w_rtype yp[],
Integer iuser[], nagad_t1w_w_rtype ruser[])
{
nagad_t1w_w_rtype r;
r = 1.0/sqrt(y[0]*y[0]+y[1]*y[1]);
r = r*r*r;
yp[0] = y[2];
yp[1] = y[3];
yp[2] = -y[0]*r;
yp[3] = -y[1]*r;
}