/* D02PR_A1W_F C++ Header Example Program.
*
* Copyright 2020 Numerical Algorithms Group.
*
* Mark 27.1, 2020.
*/
#include <nag.h>
#include <dco.hpp>
#include <nagad.h>
#include <math.h>
#include <stdio.h>
#include <iostream>
using namespace std;
#ifdef __cplusplus
extern "C"
{
#endif
static void NAG_CALL f(void * &ad_handle, const nagad_a1w_w_rtype &t,
const Integer &n, const nagad_a1w_w_rtype y[],
nagad_a1w_w_rtype yp[],
Integer iuser[], nagad_a1w_w_rtype ruser[]);
#ifdef __cplusplus
}
#endif
int main(void)
{
const Integer n = 4, npts = 6;
const Integer liwsav = 130;
const Integer lrwsav = 350 + 32 * n;
Integer exit_status = 0;
nagad_a1w_w_rtype *rwsav = 0, *thresh = 0, *ynow = 0;
nagad_a1w_w_rtype *ypnow = 0, *y = 0, ruser[1];
Integer *iwsav = 0, iuser[1];
cout << "D02PR_A1W_F C++ Header Example Program Results\n\n";
thresh = new nagad_a1w_w_rtype [n];
ynow = new nagad_a1w_w_rtype [n];
y = new nagad_a1w_w_rtype [n];
ypnow = new nagad_a1w_w_rtype [n];
iwsav = new Integer [liwsav];
rwsav = new nagad_a1w_w_rtype [lrwsav];
// Set initial conditions for ODE and parameters for the integrator.
Integer method = -3;
nagad_a1w_w_rtype eps, tol, hstart, tend, tstart;
eps = 0.7;
tstart = 0.0;
tol = 1.0e-4;
tend = 6.0*nag_math_pi;
hstart = 0.0;
for (int k = 0; k < n; k++) {
thresh[k] = 1.0e-10;
}
{
double tolr = nagad_a1w_get_value(tol);
cout << "\n Calculation with tol = " << tolr << endl;
}
cout.setf(ios::fixed);
cout.setf(ios::right);
cout.precision(3);
{
double t = nagad_a1w_get_value(tstart);
cout << "\n t y1 y2" << endl;
cout.width(6); cout << t;
}
// Create AD tape
nagad_a1w_ir_create();
// Create AD configuration data object
Integer ifail = 0;
void *ad_handle = 0;
x10aa_a1w_f_(ad_handle,ifail);
nagad_a1w_ir_register_variable(&eps);
y[0] = 1.0 - eps;
y[1] = 0.0;
y[2] = 0.0;
y[3] = sqrt((1.0+eps)/(1.0-eps));
for (int k = 0; k < n; k++) {
double yr = nagad_a1w_get_value(y[k]);
cout.width(10); cout << yr;
}
cout << endl;
nagad_a1w_w_rtype tnow, twant, tinc;
tinc = (tend-tstart)/( (double) npts);
twant = tstart + tinc;
// Initialize Runge-Kutta method for integrating ODE
ifail = 0;
d02pq_a1w_f_(ad_handle,n,tstart,twant,y,tol,thresh,method,hstart,
iwsav,rwsav,ifail);
do {
ifail = 0;
d02pf_a1w_f_(ad_handle,f,n,tnow,ynow,ypnow,iuser,ruser,
iwsav,rwsav,ifail);
if (tnow==twant) {
cout.width(6); cout << nagad_a1w_get_value(tnow);
for (int k = 0; k < n; ++k) {
cout.width(10); cout << nagad_a1w_get_value(ynow[k]);
}
cout << endl;
twant = twant + tinc;
ifail = 0;
d02pr_a1w_f_(ad_handle,twant,iwsav,rwsav,ifail);
}
} while (tnow<tend);
nagad_a1w_w_rtype hnext, waste;
Integer fevals, stepcost, stepsok;
ifail = 0;
d02pt_a1w_f_(ad_handle,fevals,stepcost,waste,stepsok,hnext,iwsav,
rwsav,ifail);
cout << "\n Cost of the integration in evaluations of f is " << fevals;
cout << endl;
// Setup evaluation of derivatives via adjoints.
double inc = 1.0;
nagad_a1w_inc_derivative(&ynow[0],inc);
ifail = 0;
nagad_a1w_ir_interpret_adjoint(ifail);
cout << "\n Derivatives calculated: First order adjoints\n";
cout << " Computational mode : algorithmic\n";
// Get derivatives
cout << "\n Derivatives: (solution w.r.t. eps)\n";
cout.setf(ios::scientific,ios::floatfield);
cout.precision(5);
double deps;
deps = nagad_a1w_get_derivative(eps);
cout << " dy(t)/deps = ";
cout.width(12); cout << deps << endl;
ifail =0;
x10ab_a1w_f_(ad_handle,ifail);
nagad_a1w_ir_remove();
delete [] thresh;
delete [] ynow;
delete [] y;
delete [] ypnow;
delete [] iwsav;
delete [] rwsav;
return exit_status;
}
static void NAG_CALL f(void * &ad_handle, const nagad_a1w_w_rtype &t,
const Integer &n, const nagad_a1w_w_rtype y[],
nagad_a1w_w_rtype yp[],
Integer iuser[], nagad_a1w_w_rtype ruser[])
{
nagad_a1w_w_rtype r;
r = 1.0/sqrt(y[0]*y[0]+y[1]*y[1]);
r = r*r*r;
yp[0] = y[2];
yp[1] = y[3];
yp[2] = -y[0]*r;
yp[3] = -y[1]*r;
}