! D02CJF Example Program Text
! Mark 27.1 Release. NAG Copyright 2020.
Module d02cjfe_mod
! Data for D02CJF example program
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: fcn, g, output
! .. Parameters ..
Integer, Parameter, Public :: n = 3, nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: h, xend
! n: number of differential equations
Contains
Subroutine output(xsol,y)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: xsol
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)
! .. Local Scalars ..
Integer :: j
! .. Intrinsic Procedures ..
Intrinsic :: abs
! .. Executable Statements ..
Write (nout,99999) xsol, (y(j),j=1,n)
xsol = xsol + h
! Make sure we exactly hit xsol = xend
If (abs(xsol-xend)<h/4.0E0_nag_wp) Then
xsol = xend
End If
Return
99999 Format (1X,F8.2,3F13.5)
End Subroutine output
Subroutine fcn(x,y,f)
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = -0.032E0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = -0.02E0_nag_wp
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)
! .. Intrinsic Procedures ..
Intrinsic :: cos, tan
! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
f(3) = alpha/y(2)**2
Return
End Subroutine fcn
Function g(x,y)
! .. Function Return Value ..
Real (Kind=nag_wp) :: g
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)
! .. Executable Statements ..
g = y(1)
Return
End Function g
End Module d02cjfe_mod
Program d02cjfe
! D02CJF Example Main Program
! .. Use Statements ..
Use d02cjfe_mod, Only: fcn, g, h, n, nin, nout, output, xend
Use nag_library, Only: d02cjf, d02cjw, d02cjx, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: tol, x, xinit
Integer :: i, icase, ifail, iw, j, kinit
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:), y(:), yinit(:)
! .. Intrinsic Procedures ..
Intrinsic :: real
! .. Executable Statements ..
Write (nout,*) 'D02CJF Example Program Results'
iw = 21*n + 28
Allocate (w(iw),y(n),yinit(n))
! Skip heading in data file
Read (nin,*)
! xinit: initial x value, xend: final x value.
Read (nin,*) xinit
Read (nin,*) xend
Read (nin,*) yinit(1:n)
Read (nin,*) kinit
Do icase = 1, 4
Write (nout,*)
Select Case (icase)
Case (1)
Write (nout,99995) icase, 'intermediate output, root-finding'
Case (2)
Write (nout,99995) icase, 'no intermediate output, root-finding'
Case (3)
Write (nout,99995) icase, 'intermediate output, no root-finding'
Case (4)
Write (nout,99995) icase, &
'no intermediate output, no root-finding ( integrate to XEND)'
End Select
Do j = 4, 5
tol = 10.0E0_nag_wp**(-j)
Write (nout,*)
Write (nout,99999) ' Calculation with TOL =', tol
x = xinit
y(1:n) = yinit(1:n)
If (icase/=2) Then
Write (nout,*) ' X Y(1) Y(2) Y(3)'
h = (xend-x)/real(kinit+1,kind=nag_wp)
End If
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Select Case (icase)
Case (1)
Call d02cjf(x,xend,n,y,fcn,tol,'Default',output,g,w,ifail)
Write (nout,99998) ' Root of Y(1) = 0.0 at', x
Write (nout,99997) ' Solution is', (y(i),i=1,n)
Case (2)
Call d02cjf(x,xend,n,y,fcn,tol,'Default',d02cjx,g,w,ifail)
Write (nout,99998) ' Root of Y(1) = 0.0 at', x
Write (nout,99997) ' Solution is', (y(i),i=1,n)
Case (3)
Call d02cjf(x,xend,n,y,fcn,tol,'Default',output,d02cjw,w,ifail)
Case (4)
Write (nout,99996) x, (y(i),i=1,n)
Call d02cjf(x,xend,n,y,fcn,tol,'Default',d02cjx,d02cjw,w,ifail)
Write (nout,99996) x, (y(i),i=1,n)
End Select
End Do
If (icase<4) Then
Write (nout,*)
End If
End Do
99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.3)
99997 Format (1X,A,3F13.5)
99996 Format (1X,F8.2,3F13.5)
99995 Format (1X,'Case ',I1,': ',A)
End Program d02cjfe