/* D01RL_T1W_F C++ Header Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
* Mark 27, 2019.
*/
#include <nag.h>
#include <dco.hpp>
#include <nagad.h>
#include <stdio.h>
#include <math.h>
#include <iostream>
using namespace std;
extern "C"
{
static void NAG_CALL f(void * &ad_handle,
const nagad_t1w_w_rtype x[],
const Integer &nx,
nagad_t1w_w_rtype fv[],
Integer &iflag,
Integer iuser[],
nagad_t1w_w_rtype ruser[],
const void *&cpuser);
}
int main(void)
{
// Scalars
int exit_status = 0;
cout << "D01RL_T1W_F C++ Header Example Program Results\n\n";
nagad_t1w_w_rtype a, b, epsabs, epsrel;
a = 0.0;
b = 1.0;
epsabs = 0.0;
epsrel = 1.0e-4;
Integer npts = 1;
Integer maxsub = 20;
Integer lrinfo = 80 + npts + 6;
Integer liinfo = 40 + npts + 4;
nagad_t1w_w_rtype *rinfo = 0;
Integer *iinfo = 0;
rinfo = new nagad_t1w_w_rtype [lrinfo];
iinfo = new Integer [liinfo];
// Create AD configuration data object
Integer ifail = 0;
void *ad_handle = 0;
x10aa_t1w_f_(ad_handle,ifail);
double inc = 1.0, zero = 0.0;
nagad_t1w_w_rtype result, abserr, ruser[20], points[1];
Integer iuser[1];
const void *cpuser = 0;
points[0] = 1.0/7.0;
iuser[0] = 0;
for (int i = 0; i<20; ++i) {
ruser[i] = 0.0;
}
// Call the AD routine incrementing each active input in turn
nagad_t1w_inc_derivative(&a,inc);
ifail = -1;
d01rl_t1w_f_(ad_handle,f,a,b,npts,points,epsabs,epsrel,maxsub,result,abserr,rinfo,iinfo,
iuser,ruser,cpuser,ifail);
nagad_t1w_set_derivative(&a,zero);
if (ifail<0) {
cout << "\n ** d01rl_t1w_f_ failed error exit ifail = " << ifail << endl;
goto END;
}
double da;
da = nagad_t1w_get_derivative(result);
nagad_t1w_inc_derivative(&b,inc);
ifail = -1;
d01rl_t1w_f_(ad_handle,f,a,b,npts,points,epsabs,epsrel,maxsub,result,abserr,rinfo,iinfo,
iuser,ruser,cpuser,ifail);
double db;
db = nagad_t1w_get_derivative(result);
// Print inputs and primal outputs.
cout << "\n lower limit of integration (a) = " << nagad_t1w_get_value(a) << endl;
cout << " upper limit of integration (b) = " << nagad_t1w_get_value(b) << endl;
cout << " given break point (points[0]) = " << nagad_t1w_get_value(points[0]) << endl;
cout << " absolute accuracy requested = " << nagad_t1w_get_value(epsabs) << endl;
cout << " relative accuracy requested = " << nagad_t1w_get_value(epsrel) << endl;
cout << " maximum number of subintervals = " << maxsub << endl;
cout.setf(ios::scientific,ios::floatfield);
cout.precision(4);
if (ifail >= 0) {
cout << "\n approximation to the integral : " << nagad_t1w_get_value(result) << endl;
cout << " estimate of the absolute error : " << nagad_t1w_get_value(abserr) << endl;
cout << " number of function evaluations : " << iinfo[0] << endl;
}
cout << "\n Derivatives calculated: First order tangents\n";
cout << " Computational mode : algorithmic\n";
// Output derivatives
cout << "\n Derivative of solution w.r.t end points:\n";
cout << " dI/da = " << da << endl;
cout << " dI/db = " << db << endl;
END:
// Remove computational data object
x10ab_t1w_f_(ad_handle,ifail);
delete [] rinfo;
delete [] iinfo;
return exit_status;
}
static void NAG_CALL f(void * &ad_handle,
const nagad_t1w_w_rtype x[],
const Integer &nx,
nagad_t1w_w_rtype fv[],
Integer &iflag,
Integer iuser[],
nagad_t1w_w_rtype ruser[],
const void *&cpuser)
{
// dco/c++ used here to perform AD of the following
iflag = 0;
for (int i=0; i<nx; i++) {
fv[i] = x[i] - 1.0/7.0;
if (fv[i] == 0.0) {
ruser[iflag] = x[i];
iflag++;
} else if (fv[i] < 0.0) {
fv[i] = -fv[i];
}
}
iuser[0] = iflag;
if (iflag == 0) {
for (int i=0; i<nx; i++) {
fv[i] = 1.0/sqrt(fv[i]);
}
} else {
iflag = -iflag;
}
return;
}