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1  Scope of the Chapter

This chapter is concerned with the provision of some commonly occurring physical and mathematical
functions.

2 Background to the Problems

The majority of the routines in this chapter approximate real-valued functions of a single real argument,
and the techniques involved are described in Section 2.1. In addition the chapter contains routines for
elliptic integrals (see Section 2.2), Bessel and Airy functions of a complex argument (see Section 2.3),
complementary error function of a complex argument, hypergeometric functions and various option
pricing routines for use in financial applications.

2.1 Functions of a Single Real Argument

Most of the routines provided for functions of a single real argument have been based on truncated
Chebyshev expansions. This method of approximation was adopted as a compromise between the
conflicting requirements of efficiency and ease of implementation on many different machine ranges.
For details of the reasons behind this choice and the production and testing procedures followed in
constructing this chapter see Schonfelder (1976).

Basically, if the function to be approximated is f(x), then for x € [a,b] an approximation of the form

flz) = g(x)) _CTi(t)
r=0

is used (3 denotes, according to the usual convention, a summation in which the first term is halved),
where g(x) is some suitable auxiliary function which extracts any singularities, asymptotes and, if
possible, zeros of the function in the range in question and ¢ = ¢(x) is a mapping of the general range
[a,b] to the specific range [—1,41] required by the Chebyshev polynomials, 7,(¢). For a detailed
description of the properties of the Chebyshev polynomials see Clenshaw (1962) and Fox and Parker
(1968).

The essential property of these polynomials for the purposes of function approximation is that T,,(¢)
oscillates between +1 and it takes its extreme values n + 1 times in the interval [—1,+1]. Therefore,
provided the coefficients C, decrease in magnitude sufficiently rapidly the error made by truncating the
Chebyshev expansion after n terms is approximately given by

E(t) ~ C,T,(¢).

That is, the error oscillates between +C,, and takes its extreme value n + 1 times in the interval in
question. Now this is just the condition that the approximation be a minimax representation, one which
minimizes the maximum error. By suitable choice of the interval, [a, b], the auxiliary function, g(x), and
the mapping of the independent variable, ¢(x), it is almost always possible to obtain a Chebyshev
expansion with rapid convergence and hence truncations that provide near minimax polynomial
approximations to the required function. The difference between the true minimax polynomial and the
truncated Chebyshev expansion is seldom sufficiently great enough to be of significance.

The evaluation of the Chebyshev expansions follows one of two methods. The first and most efficient,
and hence the most commonly used, works with the equivalent simple polynomial. The second method,
which is used on the few occasions when the first method proves to be unstable, is based directly on the
truncated Chebyshev series, and uses backward recursion to evaluate the sum. For the first method, a
suitably truncated Chebyshev expansion (truncation is chosen so that the error is less than the machine
precision) is converted to the equivalent simple polynomial. That is, we evaluate the set of coefficients
b, such that

n—1 n—1
y(t) = bt" =D CT(1).
r=0 r=0

The polynomial can then be evaluated by the efficient Horner's method of nested multiplications,

y(t) = (b() + t(b] + t(bz +... t(bnfz + tbn,1))) .. )

S.2 Mark 26.1



S — Approximations of Special Functions Introduction — S

This method of evaluation results in efficient routines but for some expansions there is considerable loss
of accuracy due to cancellation effects. In these cases the second method is used. It is well known that
if

b1 = Ch1
by = 2tb, 1 + Cn—2
bj =2tbj+1—bj+2—|—0j, j=n—3,n—4,...,0

then

> T () = 3(bo — b)
r=0

and this is always stable. This method is most efficiently implemented by using three variables
cyclically and explicitly constructing the recursion.

That is,

a = Cn—l
ﬁ = 2« + Cn_z
T o= 2t/é) —a+ Cn—3
a = 2y—FB+Chy4
/8 = 2la—vy+ Cns

saya = 2y—04+0C;
,8 = 2ta— v+ C,

y(t) = tB—a+iC

The auxiliary functions used are normally functions compounded of simple polynomial (usually linear)
factors extracting zeros, and the primary compiler-provided functions, sin, cos, In, exp, sqrt, which
extract singularities and/or asymptotes or in some cases basic oscillatory behaviour, leaving a smooth
well-behaved function to be approximated by the Chebyshev expansion which can therefore be rapidly
convergent.

The mappings of [a,b] to [—1,+1] used range from simple linear mappings to the case when b is
infinite, and considerable improvement in convergence can be obtained by use of a bilinear form of
mapping. Another common form of mapping is used when the function is even; that is, it involves only
even powers in its expansion. In this case an approximation over the whole interval [—a,a] can be
provided using a mapping t = 2(z/ a)2 — 1. This embodies the evenness property but the expansion in ¢
involves all powers and hence removes the necessity of working with an expansion with half its
coefficients zero.

For many of the routines an analysis of the error in principle is given, namely, if £/ and V are the
absolute errors in function and argument and € and 6 are the corresponding relative errors, then

E =~ |f(2)|V
E = |zfi(x)|6

of (@)
i@ |

If we ignore errors that arise in the argument of the function by propagation of data errors, etc., and
consider only those errors that result from the fact that a real number is being represented in the
computer in floating-point form with finite precision, then ¢ is bounded and this bound is independent
of the magnitude of x. For example, on an 11-digit machine

|6 < 1071

(This of course implies that the absolute error V = x6 is also bounded but the bound is now dependent
on z.) However, because of this the last two relations above are probably of more interest. If possible
the relative error propagation is discussed; that is, the behaviour of the error amplification factor
|xf(x)/f(x)| is described, but in some cases, such as near zeros of the function which cannot be
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extracted explicitly, absolute error in the result is the quantity of significance and here the factor
|zf'(x)| is described. In general, testing of the functions has shown that their error behaviour follows
fairly well these theoretical error behaviours. In regions where the error amplification factors are less
than or of the order of one, the errors are slightly larger than the above predictions. The errors are here
limited largely by the finite precision of arithmetic in the machine, but € is normally no more than a few
times greater than the bound on ¢. In regions where the amplification factors are large, of order ten or
greater, the theoretical analysis gives a good measure of the accuracy obtainable.

It should be noted that the definitions and notations used for the functions in this chapter are all taken
from Abramowitz and Stegun (1972). You are strongly recommended to consult this book for details
before using the routines in this chapter. An excellent on-line reference for special functions is the
NIST Digital Library of Mathematical Functions.

2.2 Approximations to Elliptic Integrals

Four functions provided here are symmetrised variants of the classical (Legendre) elliptic integrals.
These alternative definitions have been suggested by Carlson (1965), Carlson (1977b) and Carlson
(1977a) and he also developed the basic algorithms used in this chapter.

The symmetrised elliptic integral of the first kind is represented by

R / at
(2,9, 2
VE+2)(t+y)(t+2)

where x,y, z > 0 and at most one may be equal to zero.

is chosen so as to make

Rp(z,z,x) = 1/\/z.

If any two of the variables are equal, Ry degenerates into the second function

1 [ dt
Rc(m,y) = RF(J%?/, y) = E/o Wt—l——:ﬁ

The normalization factor, . 3»

where the argument restrictions are now = > 0 and y # 0.

This function is related to the logarithm or inverse hyperbolic functions if 0 < y < z, and to the inverse
circular functions if 0 < x <y.

The symmetrised elliptic integral of the second kind is defined by

p(T,y, 2

/ ¢t+xt+y@+@

with 2 >0, z > 0 and y > 0, but only one of x or y may be zero.

The function is a degenerate special case of the symmetrised elliptic integral of the third kind
dt

¢t+xt+m@+@@+m

Ry(z,y,2,p) =

with p # 0 and z,y,z > 0 with at most one equality holding. Thus Rp(z,y,z) = Ry(x,y, 2, 2). The
normalization of both these functions is chosen so that

Rp(z,z,2) = Ry(z,z,z,x) = 1/(:1:\/5)

The algorithms used for all these functions are based on duplication theorems. These allow a recursion
system to be established which constructs a new set of arguments from the old using a combination of
arithmetic and geometric means. The value of the function at the original arguments can then be simply
related to the value at the new arguments. These recursive reductions are used until the arguments differ
from the mean by an amount small enough for a Taylor series about the mean to give sufficient
accuracy when retaining terms of order less than six. Each step of the recurrences reduces the difference
from the mean by a factor of four, and as the truncation error is of order six, the truncation error goes
like (4096) ", where n is the number of iterations.
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The above forms can be related to the more traditional canonical forms (see Section 17.2 of
Abramowitz and Stegun (1972)), as follows.

If we write ¢ = cos® ¢, 7 =1 —m sin’ ¢, s = 1 —n sin® ¢, where 0 < ¢ < %ﬂ', we have

the classical elliptic integral of the first kind:

F(¢|m)= /00(1 —m sin® 9)7%d9 =sin¢ Rr(q,r,1);

the classical elliptic integral of the second kind:
¢ 1
E(¢ | m) :/ (1 —m sin” 0)*df
0

= Sil’lgbRF(q,T', 1) - %mSin3¢RD<q7T7 1)

the classical elliptic integral of the third kind:
@ 1
I(n;p | m) = / (1 —nsin’ 9)71(1 —m sin®§) *df
0

=sin¢ Rp(q,r, 1) +%nsin3¢RJ(q, r,1,s).

Also the classical complete elliptic integral of the first kind:
K(m) = /0%(1 —m sin?6) 2df = Rp(0,1 —m, 1);
the classical complete elliptic integral of the second kind:
E(m) = /0%(1 — msin0)?df = Rp(0,1 —m, 1) — Ym Rp(0,1 —m, 1).
For convenience, Chapter S contains routines to evaluate classical and symmetrised elliptic integrals.

2.3 Bessel and Airy Functions of a Complex Argument

The routines for Bessel and Airy functions of a real argument are based on Chebyshev expansions, as
described in Section 2.1. The routines provided for functions of a complex argument, however, use
different methods. These routines relate all functions to the modified Bessel functions I,(z) and K, (%)
computed in the right-half complex plane, including their analytic continuations. I, and K, are
computed by different methods according to the values of z and v. The methods include power series,
asymptotic expansions and Wronskian evaluations. The relations between functions are based on well
known formulae (see Abramowitz and Stegun (1972)).

2.4 Option Pricing Routines

The option pricing routines evaluate the closed form solutions or approximations to the equations that
define mathematical models for the prices of selected financial option contracts. These solutions can be
viewed as special functions determined by the underlying equations. The terminology associated with
these routines arises from their setting in financial markets and is briefly outlined below. See Joshi
(2003) for a comprehensive introduction to this subject. An option is a contract which gives the holder
the right, but not the obligation, to buy (if it is a call) or sell (if it is a put) a particular asset, S. A
European option can be exercised only at the specified expiry time, 7', while an American option can be
exercised at any time up to 7. For Asian options the average underlying price over a pre-set time period
determines the payoff.

The asset is bought (if a call) or sold (if a put) at a pre-specified strike price X. Thus, an option
contract has a payoff to the holder of max{(Sr — X),0} for a call or max{(X — Sr),0}, for a put,
which depends on whether the asset price at the time of exercise is above (call) or below (put) the
strike, X. If at any moment in time a contract is currently showing a theoretical profit then it is deemed
‘in-the-money’; otherwise it is deemed ‘out-of-the-money’.
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The option contract itself therefore has a value and, in many cases, can be traded in markets.
Mathematical models (e.g., Black—Scholes, Merton, Vasicek, Hull-White, Heston, CEV, SABR, ...)

giv

e theoretical prices for particular option contracts using a number of assumptions about the

behaviour of financial markets. Typically the price S; of the underlying asset at time ¢ is modelled as

the
the

solution of a stochastic differential equation (SDE). Depending on the complexity of this equation,
model may admit closed form formulae for the prices of various options. The options described in

this chapter introduction are detailed below. We let E denote expectation with respect to the risk neutral
measure and we define I4 to be 1 on the set A and 0 otherwise.

S.6

The price of a standard European call option is E(e"“T max{Sy — X, O}) and the price of a standard
European put option is E(e‘rT max{X — Sr, 0})

For continuously averaged geometric Asian options define

T
G(T) =exp </ log(S,g)dt)
0
Then the price of an Asian call option is E(e~"" max{G(T') — X,0}) and the price of an Asian put
option is E(e " max{X — G(T),0}).
For a binary asset-or-nothing option the price of a call is E(e‘TTSTI{SpX}) and the price of a put is
E(e Srlis <x))-

For a binary cash-or-nothing option the price of a call is F (6_7'TXI (Sr> X}) and the price of a put is
E(€77)TXI{ST<X}).

For a floating-strike lookback option the price of a call is E(e_7'T(ST — min ogthSt)) and the price
of a put is E(e”""(max o<;<1S; — Sr)).

For an up-and-in barrier option with barrier level H and cash rebate K, set A = {max o<;<7S; > H}.
Then the price of a call is

E(e*"T max{Sr — X,0}I4 +e " TK(1 — 1))
and the price of a put is
E(e”"max{X — 87,044 + e " K(1 — 14))

For a down-and-in barrier option with barrier level H and cash rebate K, set
A = {min<;<pS; < H}. Then the price of a call is

E(e max{Sr — X,0} 4 + e "K(1 — 1))
and the price of a put is
E(e”" max {X — Sr,0 4 + e "TK(1 — 14))

For an up-and-out barrier option with barrier level H and cash rebate K, set
A = {max g<;<7S; > H}. Then the price of a call is

E(e" max{Sr — X,0}(1 — I4) + e "' KI,)
and the price of a put is
E(e”" max{X — S7,0}(1 — I4) + e "' KI,)

For a down-and-out barrier option with barrier level H and cash rebate K, set
A = {min<;<7S; < H}. Then the price of a call is

E(e”"max{Sr — X,0}(1 — I4) + e ""KI,)
and the price of a put is

E(e”""max{X — S7,0}(1 — I4) + e ""KI,)
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— The price of an American call option is esssup,.r£(e”"" max{S, — X,0}) and the price of an
American put option is esssupy.,.pE(e”"" max{X — S;,0}). Here esssup,.,., denotes the essential
supremum over all stopping times 7 for the process S which take values in TO, T). If S is a Markov
process, then the essential supremum may be replaced with the normal supremum. Note that if the
asset .S pays no dividends then the price of an American call option is the same as a European call
option.

2.4.1 The Black—Scholes Model

The best known model of asset behaviour is the Black—Scholes model. Under the risk-neutral measure,
the asset is governed by the SDE

s, _

S,
where r is the continuously compounded risk-free interest rate, ¢ is the continuously compounded
dividend yield, o is the volatility of log-asset returns (i.e., log(Siya/S;)) and W = (W), is a

standard Brownian motion. Under this model, the price of any option P must solve the Black—Scholes
PDE

(r —q)dt + cdW,

orP  oP 18P ,,
54‘%(7’—(])54‘5@025 —rP=0

at all times before the option is exercised. This PDE admits a closed form solution for a number of
different options.

2.4.2 The Black—Scholes Model with Term Structure

The simplest extension of the Black—Scholes model is to allow r, ¢ and o to be deterministic functions
of time so that

ds
Tt = (Tt — qt)dt + O'tde,.
t

In this case one can still obtain closed form solutions for some options, e.g., European calls and puts.

2.4.3 The Heston Model
Heston (1993) proposed a stochastic volatility model with the following form

ds,
< = (r—qd+ Jadw
t
dv, = r(n—v)dt + o /o dW>

where W) and W® are two Brownian motions with quadratic covariation given by
d<W(1), W<2)> , = pdt. In this model 7 and ¢ are the continuously compounded risk free interest rate
and dividend rate respectively, v = (v),5 is the stochastic volatility process, 7 is the long term mean of

volatility, x is the rate of mean reversion, and ¢ is the volatility of volatility. The prices of European
call and put options in the Heston model are available in closed form up to the evaluation of an integral
transform (see Lewis (2000)).

2.4.4 The Heston Model with Term Structure

The Heston model can be extended by allowing the coefficients to become deterministic functions of
time:

dsS,
?t = (r—q)dt + Jodw"
t
dve = Ke(n —vp)dt + at\/v_tth(z)

where W) and W® are two Brownian motions with quadratic covariation given by
d(W(1>,W(2)> , = prdt. When the coefficients are restricted to being piecewise constant functions of
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time, the prices of European call and put options can be calculated as described in Elices (2008) and
Mikhailov and Nogel (2003).

2.5 Hypergeometric Functions

The confluent hypergeometric function M(a,b,x) (or | F,(a;b;x)) requires a number of techniques to
approximate it over the whole parameter (a,b) space and for all argument (z) values. For x well within
the unit circle |z| < p < 1 (where p = 0.8 say), and for relatively small parameter values, the function
can be well approximated by Taylor expansions, continued fractions or through the solution of the
related ordinary differential equation by an explicit, adaptive integrator. For values of |x| > p, one of
several transformations can be performed (depending on the value of z) to reformulate the problem in
terms of a new argument x’ such that |2’| < p. If one or more of the parameters is relatively large (e.g.,
|a| > 30) then recurrence relations can be used in combination to reformulate the problem in terms of
parameter values of small size (e.g., |a| < 1).

Approximations to the hypergeometric functions can therefore require all of the above techniques in
sequence: a transformation to get an argument well inside the unit circle, a combination of recurrence
relations to reduce the parameter sizes, and the approximation of the resulting hypergeometric function
by one of a set of approximation techniques. Similar complications arise in the computation of the
Gaussian Hypergeometric Function , F].

All the techniques described above are based on those described in Pearson (2009).

3 Recommendations on Choice and Use of Available Routines

3.1 Vectorized Routine Variants

Many routines in Chapter S which compute functions of a single real argument have variants which
operate on vectors of arguments. For example, s18aef computes the value of the [, Bessel function for a
single argument, and s18asf computes the same function for multiple arguments. In general it should be
more efficient to use vectorized routines where possible, though to some extent this will depend on the
environment from which you call the routines. See Section 4 for a complete list of vectorized routines.

3.2 Elliptic Integrals

IMPORTANT ADVICE: users who encounter elliptic integrals in the course of their work are strongly
recommended to look at transforming their analysis directly to one of the Carlson forms, rather than to
the traditional canonical Legendre forms. In general, the extra symmetry of the Carlson forms is likely
to simplify the analysis, and these symmetric forms are much more stable to calculate. Note, however,
that this transformation may eventually lead to the following combination of Carlson forms:

1
Rp(0,1 —m,1) — ngD(O, 1—m,1)

with possibly m — 1, which makes Ry and Rp undefined, although the combination itself remains
defined and — 1. The routine s21bjf returning the Legendre form FE(m) through this combination
makes provision for such a case, and allows m = 1.

The routine s21baf for R¢ is largely included as an auxiliary to the other routines for elliptic integrals.
This integral essentially calculates elementary functions, e.g.,

Inz :(x—l)RC<(l%)2,x), x> 0;

arcsing =gz Re(l —a2%,1),[z| < 1

arcsinhz =z Re(1 +22,1), etc.

In general this method of calculating these elementary functions is not recommended as there are
usually much more efficient specific routines available in the Library. However, s21baf may be used,
for example, to compute Inz/(x — 1) when z is close to 1, without the loss of significant figures that
occurs when Inz and x — 1 are computed separately.
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3.3 Bessel and Airy Functions

For computing the Bessel functions J,(x), Y, (x), I,(x) and K,(x) where z is real and v =0 or 1,
special routines are provided, which are much faster than the more general routines that allow a
complex argument and arbitrary real v > 0. Similarly, special routines are provided for computing the
Airy functions and their derivatives Ai(z), Bi(z), Ai'(z), Bi'(z) for a real argument which are much
faster than the routines for complex arguments.

3.4 Option Pricing Functions

For the Black—Scholes model, functions are provided to compute prices and derivatives (Greeks) of all
the European options listed in Section 2.4. Prices for American call and put options can be obtained by
calling s30qef which uses the Bjerksund and Stensland (2002) approximation to the theoretical value.
For the Black—Scholes model with term structure, prices for European call and put options can be
obtained by calling d03ndf. The prices of European call and put options in the standard Heston model
can be obtained by calling s30naf, while s30ncf returns the same prices in the Heston model with term
structure.

3.5 Hypergeometric Functions

Two routines are provided for the confluent hypergeometric function ,F). Both return values for
1 F(a; b;x) where parameters a and b, and argument x, are all real, but one variant works in a scaled
form designed to avoid unnecessary loss of precision. The unscaled routine s22baf is easier to use and
should be chosen in the first instance, changing to the scaled routine s22bbf only if problems are
encountered. Similar considerations apply to the Gaussian hypergeometric function routines s22bef and
s22bff.

4  Functionality Index

Airy function,
Ai, real argument,

o1 USRS PPPPRT s17agf
VECTOTIZEM ..ottt et ettt e ettt e e et e e e st e e e saeaneee s sl7auf
Ai or Ai', complex argument, optionally scaled ..............ccocvovveiiiieeirieieeeeeeeeeeeeeeee s17dgf
Ai’, real argument,
o7 1 TP UUUS SO PPPPPPPP s17ajf
VECEOTIZEA .o e e e et e e e e e e e ettt ettt e e e e e e e e e e e e aeeeeaaeeaaeaeeeeeeaaraeaaaaanes sl7awf
Bi, real argument,
SCALAT ..ttt ettt e e ettt e e e aab et e e e bbbt e e e e abteeee e s17ahf
VECTOTIZEM ..ottt ettt e ettt e e ettt e e et e e e st reee s sl7avf
Bi or Bi’, complex argument, optionally scaled.............c.ccoovivveieiveeireieeeeeeeeeeeeeeeeene s17dhf
Bi, real argument,
SCALAT ...ttt et e ettt e sttt e et e e et eee e s17akf
A Te (0 g /<1« DU P PP PRSP s17axf
Arccos,
INVEISE CITCULAT COSITIE tiiiiiiiiiiiiiiiiiiiiiieee e e e e ettt et e e e e e e e eeeteettteeeeeeeeeeseannaebeneeeeaaeeeesesnnnes s09abf
Arccosh,
INVETSE NYPETDOIIC COSIME . uuuuniiiiiiieiieeeeee e e e e e e e e e e e e aaaaeas sllacf
Arcsin,
INVEISE CITCULAT SIM@ ...iiiiiiiiiiiiiiiiiiiiiiie e e e e e e ettt e e e e e e e e e eiettereeeeeeeeeeseannaeteaeeeeaaaeeesennnnnes s09aaf
Arcsinh,
INVETSE NYPETDOIIC SINE ..uuiiiiiiiieiie e e e e e e e e e e eaaaaaeas sllabf
Arctanh,
INverse hyperbolic TANZENT .....cc..uiiiiiiiiiiee e et e e e ettt e e e e e e e e ettt eeeeeeeeeeeannnes sllaaf
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Bessel function,
Iy, real argument,

SCALAT .. eeiiiiiiiiiiiiit ittt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ettt tr bbb e a b b —— ittt —— e e e aaaaaaaaaaaaaaans s18aef
VECEOTIZEMA . ttiiiieeeeee e e e e e e e e e e et e e e ettt e s e e s eaaaaaaaaaaaaaaaaaaeeeeeesesssssssrnnes s18asf

I, real argument,

SCALAT ... ettt e e e e e e e e e e e e e e et aaaaaaaa, s18aff
VECEOTIZEM ..o eee ettt e e e e e e e e e e e e e e e e e s18atf

I, complex argument, optionally scaled...........cceviiiiiiiiiiiiiiiiiiiiiieee e s18def

Jo, real argument,

Eo7:1 -} S USSUURPRRP sl17aef
VECTOTIZEM ... e eieeiiiiee ettt e e e e e e e e e et e e e e e e e e bt e e e e e eeaabaeeeeeesatannens sl17asf

J1, real argument,

SCALAT ...oeiiiiittietet et e e e e e e e e e e e e e e e e e e et ————————————————aaaaaaaaaaaaaaaaans sl17aff
VECEOTIZEMA ...ttt eee e e e e e e e e e e ettt e e e e e e e e e aaaeaaaaaaaaaaeeeeeeereararrraaans s17atf

N o0 101 0] (S QI 4 111 4 L 1L SO TSP PRI s18gkf

Jy,, complex argument, optionally scaled .......ccccoeeeeiiiiiiiiiiiiiiiiiin s17def

K, real argument,

SCALAT ...eeeiiiiittititi e e e e e e e e e e e e e e e e e e e e e e —————————————————aaaaaaaaaaaaaaaaas s18acf
AT (0] g A< s DU P PP PRSPPI s18aqf

K, real argument,

(o1 -} PSSR PRPRRP s18adf
VECTOTIZEM ... e iieeiiiie ettt e e e et e e e e e e e et e e e e e e et it e e e e e e e bt e eeeeeeabaanens s18arf

K, complex argument, optionally scaled ............cccceeiiiiiiiiiiiiiiiiiiiee e s18dcf

Yp, real argument,

SCALAT ...eeiiiiiiiiiiiitt ittt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e et e aa—— bt ——————————— e aaaaaaaaaaaaaaas sl17acf
VECTOTIZEM ...t eeteeeeeeeie ettt e e e e ettt e e e e e e e ettt et e eeeeeeeeaannbbeeeeeas s17aqf

Y}, real argument,

SCALAT ...ttt e et e e ——————————————————————————aa s17adf
VECEOTIZEM ovvteeeeee e e e e ettt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e erae e sl7arf

Y,, complex argument, optionally scaled ............cccceiiiiiiiiiiiiiiiiiiiiiee e s17dcf
beta function,

L1 T010) 1410) (<3S SSURURRRR sl4dccf
Complement of the Cumulative Normal distribution ............cccceeeiieeiiiiiiiiiiiiiiiieeeeeeeeeee, s15acf
Complement of the Error function,

complex argument, SCALBA .......cuuuuiiiiiiiieieiiieee e e e e e e e s15ddf

TEAL ATZUIMIEIIE ..uuuuiiiieeeeeeeeee e e e e e e e e ettt e bttt e e s e e e eeaaeaaaaaaaaasaeaseeeessesessessssnres sl15adf

real argument, SCALEA .........ooiiiiiiiiiiiiiiiiiee e e e aeaaeeeas s15agf
Cosine,

RYPEIDOLIC «oeeiiiieieeie ettt e e e e e e ettt e e e e e e e e et eeaaaeeeas s10acf
(0101313 S 611157 3 ;| B USRS s13acf
Cumulative Normal distribution fUncCtion..................ccoiiiiiiiiiiiicceee e s15abf
DaWSON'S INLEGTAL.......uuiiiiiiiiieie ittt e e e e e e e ettt et e eeeeeeeeeastbbraaaeeeaeaeeeeaannees s15aff
Digamma function, SCAled..........ooiuiiiiiiiiiiiiie e e e e sl4adf
Elliptic functions, Jacobian, sn, cn, dn,

COMPIEX ATZUIMENT ...vvvviireeeeeeeeiiiiiiitteeeeeeeeeeeeitttteeeeeeeeeesasaasesssraeeeeeeeessssassssssnaeeaaassssannsnnes s21cbf

TEAL ATGUIMIEIIL ..eeiiiieiiiiiiii et e e e e e ettt e e e e e e e ettt et et e eeeeeeeaasnnttbbaaeeeaeeeeesannnsssssaneeaaaaeeans s21caf
Elliptic integral,

general,

Of 2nd Kind, F(2, k') @y D) ceeeueeeeieiiieieeeete e e s21daf

Legendre form,

complete of 18t Kind, K (170) coueeeiiiiiiiiiieii ettt s21bhf
complete of 2nd Kind, F(1) c.eeeouieiiiiiieeii ettt s21bjf
OF 1St KiNA, F(Q110) cutteniiiiieie ettt s21bef
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Of 20d KiNd, E(D | 70) ceeeeeieieiieeeee et e s21bff
OF 31d Kind, TT(7500 | 110) eeeieiie ettt ettt eee e e e s21bgf
symmetrised,
degenerate Of 18t Kind, JRe ..coooooeriiiiiiiiiee ettt e e e e eeeae e s21baf
OF 1St KINA, RF coeieneiiie e e s21bbf
(o] 0 1 T I 1 Lo Y o 5 S PR s21bcf
OF 31d KINA, B Jeiiiiiiiiiiiiiiiee ettt ettt e et e e et e e s21bdf
Erf,

LEaT ] B 10 1100 1S) 1L PP PPPRPRR sl5aef
Erfc,

complex argument, SCALEd .........ccooeeiiiiiiiiiii e s15ddf

TEAL ATGUIMICIIE ..eeiiiiiiiiiiiiieee e e e e e e ettt e eeeeeeeeattaaeeeeeeeeeeeeaasnessbsaaeeeaeeeeesaasssssssneeaaaaeeans s15adf
erfcx,

LEaT ] B 101100 1S) 1L PP PPPRPPR sl5agf
Exponential,

[470) 1110) 5 SRR PPRPPRRIN sOleaf
Exponential INtEEIal.........cooiiiiiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e ennes sl13aaf
Fresnel integral,

C,

o1 ST PPPPPR s20adf
VECTOTIZEM ..ottt ettt ettt e ettt e e ettt e e ettt e e e et eeeenebreee s s20arf

S,

SCALAT ...ttt ettt et e et e e et e e sttt e st e e e e etreeeenae s20acf
VECEOTIZEA ... e e e e e e e e e e e e e et e e e e e et e et e ettt eeeeeee ettt saeeeaaaaaaaaeaeaaaaaaseeeeeeseeseerssrnnes s20aqf
GAMMA TUNCHION. ...ttiiiiiiiee e e ettt e e e e e ettt e e e e e e e e e e ttbbaeeeeeaeeeeeeesnntrbaaeaeaaeeeeesannnnnssseeeens sl4aaf

Gamma function,
16707111 o) (S 1P PPPPPPPRN sl4baf

Generalized factorial fUNCHION ..........uuiiiii e e sl4aaf

Hankel function H'V or H?),

complex argument, optionally scaled ............cccuviiiiiiiiiiiiiiiiiiieee e s17dIf
Hypergeometric functions,
F(a;b; ), confluent, real argument .............c.eoieuiriiniiiinienieic e s22baf
Fy(a;b; ), confluent, real argument, scaled form.........cc.oceviiiiiiiniiiiniiniicc s22bbf
L F (a,b;¢; ), Gauss, real argument.........coc.eeeiriieriniieniieienieeie ettt s22bef
,F(a,b; c; x), Gauss, real argument, scaled form ..........cccoooeviiiiiniiininiiniiininencceeen, $22bff
Jacobian theta functions 6y (z, q),
TEAL ATZUIMIEIIE ..uuuuiiiieeeeeeeeeee e e e e e e e e e e ettt e ettt s s e e e eeeaaaaaaaaaaaasaeeeeeeeesessssessssnnes s2lccf
Kelvin function,
bei x,
e 1 ST TSP PPPPPR s19abf
AT (0] u /<] e DU PPPPR SRR s19apf
ber z,
SCALAT ... ittt e e e et e e e et aaeraraaa, s19aaf
VECEOTIZEM ..o eee et e e e e e e e e e e e e s19anf
keiz,
o7 1 ST R USSP PPPPRR s19adf
VECTOTIZEM ..t eeeeeeee ettt ettt e e e e ettt et e e e e e e e ettt e e eeeeeeeeeannnbbeeeeeas s19arf
kerz,
SCALAT ...ttt et et aaaaaaaaaaas s19acf
AT (0) g /<1« DTS P P PRSP s19aqf
Legendre functions of 18t Kind P™(), P (Z) ceeveeirereinieieieieieisieieeeieie e s22aaf
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Logarithim Of 1 - @ ceeeeiiiiiiiiiiii ettt e e et e et e e e e e s sOlbaf
Logarithm of beta function,
101 O PO P PP UPPPURRUPPPPRRNt sl4cbf
Logarithm of gamma function,
o703 00] 0] 1S TS SUPRRRUR sl4agf
LT 1 PO PPPRPRR sl4abf
TEAL, SCALEA ... i sl4ahf

Modified Struve function,
Iy — Ly, real argument,

Eo7:1 -} USRS PURRRP s18gcf
I, — Ly, real argument,
o1 U UU U UPPPPPPPPR s18gdf
Ly, real argument,
o7 1 TP U USSP PPPPPPPPP s18gaf
L, real argument,
o1 USRS PPPPRR s18gbf
Option Pricing,
American option, Bjerksund and Stensland option price ...........ccccveeeveeeieiiiiiiiiiiiiiieeeeeennn. $30qcf
Asian option, geometric continuous average rate PriCe..........ccovurrrrrrrreeeeeriiiiiiiiiieeeeeeeaeenns s30saf
Asian option, geometric continuous average rate price with Greeks ...........ccocceeeviiieeenn. $30sbf
binary asset-or-nothing OPtiON PIrICE........eeiieeereeieciiuiiiiiirreeeeeeeaaeiirrrreeeeeeeeeesaannnnrrareeeeaaeaeas s30ccf
binary asset-or-nothing option price With Greeks ..........cccceeiiiiiiiiiiiiiiiieieeiiiiiiiiieeee e $30cdf
binary cash-or-nothing OPtioN PriCE ........uuuviiiiiieeeeiiiiiiiiiitiee e e e e e e e et eeeeeeeeeeneeeeeeeeeas s30caf
binary cash-or-nothing option price with Greeks..........ccceeeiiiiiiiiiiiiiiie, $30cbf
Black—Scholes—Merton OPtiON PIICE .......eeiieeeeeieeeeurriiiiireeeeeeeeieeitrrrreeeeeeeeessasnennsrsreeeeaaeeens s30aaf
Black—Scholes—Merton option price With GreeKs..........ccceeeveiieiiiiiiiiiiiieeeeeeiiiiiiieeeeeee e s30abf
European option, option prices, using Merton jump-diffusion model .............ccccceerrrnnnins s30jaf
European option, option price with Greeks, using Merton jump-diffusion model ............. $30jbf
floating-strike 100kback OPHON PIiCE.......ciiiiiiiiiiiiiiiiiiiiiiiee et e e s30baf
floating-strike lookback option price With Greeks........cccceeeeviiiieiiiiiieeiiiieiiiiiiieeeeeeeis s30bbf
Heston's model Option PIriCE...........ciiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee e e e e e e e eeeeeeeaaaaaaaaeeeereeeeereeaeeeees s30naf
Heston's model option price With GIeeks ..........ccoevviiiiiiiiiiiiiiiiieeeiiee e $30nbf
Heston's model with term STIUCTUIC. ........eeiiiiiiiiiiiiiiiec e s30ncf
standard barrier OPLION PIICE ....ccceieeieeeeeeeeeeeeeeeiiieeeeeeeeeeeeeeeeeare bt eseeeaaaaeaaaaaaaaaaeas s30faf
Polygamma function,
P (L), TEAL et sl4aef
P (2), COMPLEX 2 ..eeeeieieeeeeeeeeeeeeeeeeee et sl4aff
PST FUNCTION 1t ettt e ettt e e et e e e e nataneee s sldacf
psi function derivatives, SCAlEd ..............oviiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e e e e e e e eearaaaa— sl4adf

Scaled modified Bessel function(s),
e"w‘lo(x), real argument,

SCALAT ... oottt e et e e et e e e e et aeraaaaa s18cef

VECTOTIZEMA .. eevn e et e et e et e et e e e e e s18csf
e~ 111, (z), real argument,

121 | PR PPPPRTRN s18cff

VECTOTIZEM .. oottt ettt e e e e e e e et e e e e e e e e e e e e e e ans s18ctf
e*Koy(x), real argument,

12=1 | PP PPRPRPRN s18ccf

A Te (0] u /<1« DU PP PRSP s18cqf
e*Ki(x), real argument,

SCALAT ... ettt e e et e aararaaa s18cdf

VECTOTIZEM .. ettt et e e e et e e e e e et e e e e e e e e e e e e e e ans s18crf
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Sine,
RYPEIDOLIC ettt e e e e e e ettt e e e e e e e e ettt aaeaaaaeeeas s10abf
SINE INEEETAL....eiiiiiiiiiiee et e e e e e ettt e e e e e e e e s s abbbb bt eeaeaeeeeeeannntenaeeeas s13adf

Struve function,
Hy, real argument,

o1 ST PPPPRR s17gaf
H,, real argument,
o 1 . ST T TSP PPPPPR s17gbf
Tangent,
o1 (o181 - SR RURRSRRR sO7aaf
NYPEIDOLIC ooveiiiiiieeieiie ettt e e e e e e e e e ettt b e e e e e e e e e e e e e nntebrbaraaaaaeaaas s10aaf
Trigamma function, SCAled ............eiiiiiiiiiiiiie e e sl4adf
Zeros of Bessel functions J,(x), J/(z), Ya(x), Y. (z),
SCALAT ...ttt ettt e ettt e ettt e e ettt e e e et e e s s17alf

5  Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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