NAG Library Routine Document ### S22BBF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. ### 1 Purpose S22BBF returns a value for the confluent hypergeometric function ${}_1F_1(a;b;x)$, with real parameters a and b and real argument x. The solution is returned in the scaled form ${}_1F_1(a;b;x)=m_f\times 2^{m_s}$. This function is sometimes also known as Kummer's function M(a,b,x). ## 2 Specification ``` SUBROUTINE S22BBF (ANI, ADR, BNI, BDR, X, FRM, SCM, IFAIL) INTEGER SCM, IFAIL REAL (KIND=nag_wp) ANI, ADR, BNI, BDR, X, FRM ``` ## 3 Description S22BBF returns a value for the confluent hypergeometric function ${}_1F_1(a;b;x)$, with real parameters a and b and real argument x, in the scaled form ${}_1F_1(a;b;x)=m_f\times 2^{m_s}$, where m_f is the real scaled component and m_s is the integer power of two scaling. This function is unbounded or not uniquely defined for b equal to zero or a negative integer. The confluent hypergeometric function is defined by the confluent series, $$_{1}F_{1}(a;b;x) = M(a,b,x) = \sum_{s=0}^{\infty} \frac{(a)_{s}x^{s}}{(b)_{s}s!} = 1 + \frac{a}{b}x + \frac{a(a+1)}{b(b+1)2!}x^{2} + \cdots$$ where $(a)_s = 1(a)(a+1)(a+2)\dots(a+s-1)$ is the rising factorial of a. M(a,b,x) is a solution to the second order ODE (Kummer's Equation): $$x\frac{d^{2}M}{dx^{2}} + (b-x)\frac{dM}{dx} - aM = 0.$$ (1) Given the parameters and argument (a,b,x), this routine determines a set of safe values $\{(\alpha_i,\beta_i,\zeta_i)\mid i\leq 2\}$ and selects an appropriate algorithm to accurately evaluate the functions $M_i(\alpha_i,\beta_i,\zeta_i)$. The result is then used to construct the solution to the original problem M(a,b,x) using, where necessary, recurrence relations and/or continuation. For improved precision in the final result, this routine accepts a and b split into an integral and a decimal fractional component. Specifically $a = a_i + a_r$, where $|a_r| \le 0.5$ and $a_i = a - a_r$ is integral. b is similarly deconstructed. Additionally, an artificial bound, arbnd is placed on the magnitudes of a_i , b_i and x to minimize the occurrence of overflow in internal calculations. $arbnd = 0.0001 \times I_{\rm max}$, where $I_{\rm max} = {\rm X02BBF}$. It should, however, not be assumed that this routine will produce an accurate result for all values of a_i , b_i and x satisfying this criterion. Please consult the NIST Digital Library of Mathematical Functions or the companion (2010) for a detailed discussion of the confluent hypergeometric function including special cases, transformations, relations and asymptotic approximations. Mark 26 S22BBF.1 ### 4 References NIST Handbook of Mathematical Functions (2010) (eds F W J Olver, D W Lozier, R F Boisvert, C W Clark) Cambridge University Press Pearson J (2009) Computation of hypergeometric functions MSc Dissertation, Mathematical Institute, University of Oxford # 5 Arguments ### 1: ANI – REAL (KIND=nag wp) Input On entry: a_i , the nearest integer to a_i , satisfying $a_i = a - a_r$. Constraints: $$ANI = \lfloor ANI \rfloor; |ANI| \le arbnd.$$ ### 2: ADR - REAL (KIND=nag wp) Input On entry: a_r , the signed decimal remainder satisfying $a_r = a - a_i$ and $|a_r| \le 0.5$. *Constraint*: $|ADR| \le 0.5$. **Note**: if $|ADR| < 100.0\epsilon$, $a_r = 0.0$ will be used, where ϵ is the *machine precision* as returned by X02AJF. ## 3: BNI - REAL (KIND=nag_wp) Input On entry: b_i , the nearest integer to b, satisfying $b_i = b - b_r$. Constraints: ``` BNI = \lfloor BNI \rfloor; |BNI| \le arbnd; if BDR = 0.0, BNI > 0. ``` ### 4: BDR - REAL (KIND=nag wp) Input On entry: b_r , the signed decimal remainder satisfying $b_r = b - b_i$ and $|b_r| \le 0.5$. *Constraint*: $|BDR| \le 0.5$. **Note**: if $|BDR - ADR| < 100.0\epsilon$, $a_r = b_r$ will be used, where ϵ is the **machine precision** as returned by X02AJF. ### 5: X - REAL (KIND=nag wp) Input On entry: the argument x of the function. Constraint: $|X| \leq arbnd$. ## 6: FRM - REAL (KIND=nag_wp) Output On exit: m_f , the scaled real component of the solution satisfying $m_f = M(a, b, x) \times 2^{-m_s}$. **Note**: if overflow occurs upon completion, as indicated by IFAIL = 2, the value of m_f returned may still be correct. If overflow occurs in a subcalculation, as indicated by IFAIL = 5, this should not be assumed. 7: SCM – INTEGER Output On exit: m_s , the scaling power of two, satisfying $m_s = \log_2\left(\frac{M(a,b,x)}{m_f}\right)$. **Note**: if overflow occurs upon completion, as indicated by IFAIL = 2, then $m_s \ge I_{\text{max}}$, where I_{max} is the largest representable integer (see X02BBF). If overflow occurs during a S22BBF.2 Mark 26 subcalculation, as indicated by IFAIL = 5, m_s may or may not be greater than $I_{\rm max}$. In either case, SCM = X02BBF will have been returned. #### 8: IFAIL – INTEGER Input/Output On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details. For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit. On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see Section 6). ## 6 Error Indicators and Warnings If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF). Errors or warnings detected by the routine: #### IFAIL = 1 Underflow occurred during the evaluation of M(a, b, x). The returned value may be inaccurate. #### IFAIL = 2 On completion, overflow occurred in the evaluation of M(a, b, x). #### IFAIL = 3 All approximations have completed, and the final residual estimate indicates some precision may have been lost. Relative residual = $\langle value \rangle$. #### IFAIL = 4 All approximations have completed, and the final residual estimate indicates no accuracy can be guaranteed. Relative residual = $\langle value \rangle$. #### IFAIL = 5 Overflow occurred in a subcalculation of M(a, b, x). The answer may be completely incorrect. ### IFAIL = 11 ``` On entry, ANI = \langle value \rangle. Constraint: |ANI| \leq arbnd = \langle value \rangle. ``` ### IFAIL = 13 ``` ANI is non-integral. On entry, ANI = \langle value \rangle. Constraint: ANI = |ANI|. ``` Mark 26 S22BBF.3 S22BBF NAG Library Manual ``` IFAIL = 21 On entry, ADR = \langle value \rangle. Constraint: |ADR| \le 0.5. IFAIL = 31 On entry, BNI = \langle value \rangle. Constraint: |BNI| \leq arbnd = \langle value \rangle. IFAIL = 32 On entry, b = BNI + BDR = \langle value \rangle. M(a,b,x) is undefined when b is zero or a negative integer. IFAIL = 33 BNI is non-integral. On entry, BNI = \langle value \rangle. Constraint: BNI = |BNI|. IFAIL = 41 On entry, BDR = \langle value \rangle. Constraint: |BDR| \le 0.5. IFAIL = 51 On entry, X = \langle value \rangle. Constraint: |X| \leq arbnd = \langle value \rangle. IFAIL = -99 An unexpected error has been triggered by this routine. Please contact NAG. See Section 3.9 in How to Use the NAG Library and its Documentation for further information. ``` IFAIL = -399 Your licence key may have expired or may not have been installed correctly. See Section 3.8 in How to Use the NAG Library and its Documentation for further information. IFAIL = -999 Dynamic memory allocation failed. See Section 3.7 in How to Use the NAG Library and its Documentation for further information. ## 7 Accuracy In general, if IFAIL = 0, the value of M may be assumed accurate, with the possible loss of one or two decimal places. Assuming the result does not under or overflow, an error estimate res is made internally using equation (1). If the magnitude of res is sufficiently large a nonzero IFAIL will be returned. Specifically, ``` \begin{split} \text{IFAIL} &= 0 \quad res \leq 1000\epsilon \\ \text{IFAIL} &= 3 \quad 1000\epsilon < res \leq 0.1 \\ \text{IFAIL} &= 4 \quad res > 0.1 \end{split} ``` S22BBF.4 Mark 26 A further estimate of the residual can be constructed using equation (1), and the differential identity, $$\frac{dM(a,b,x)}{dx} = \frac{a}{b}M(a+1,b+1,x),$$ $$\frac{d^2M(a,b,x)}{dx^2} = \frac{a(a+1)}{b(b+1)}M(a+2,b+2,x).$$ This estimate is however dependent upon the error involved in approximating M(a+1,b+1,x) and M(a+2,b+2,x). ### 8 Parallelism and Performance S22BBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library. S22BBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information. Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information. ### 9 Further Comments The values of m_f and m_s are implementation dependent. In most cases, if ${}_1F_1(a;b;x)=0$, $m_f=0$ and $m_s=0$ will be returned, and if ${}_1F_1(a;b;x)=0$ is finite, the fractional component will be bound by $0.5 \le |m_f| < 1$, with m_s chosen accordingly. The values returned in FRM (m_f) and SCM (m_s) may be used to explicitly evaluate M(a, b, x), and may also be used to evaluate products and ratios of multiple values of M as follows, $$\begin{array}{lll} M(a,b,x) & = & m_f \times 2^{m_s} \\ M(a_1,b_1,x_1) \times M(a_2,b_2,x_2) & = & \left(m_{f1} \times m_{f2}\right) \times 2^{(m_{s1}+m_{s2})} \\ & & \\ \frac{M(a_1,b_1,x_1)}{M(a_2,b_2,x_2)} & = & \frac{m_{f1}}{m_{f2}} \times 2^{(m_{s1}-m_{s2})} \\ \ln |M(a,b,x)| & = & \ln |m_f| + m_s \times \ln(2) \end{array}.$$ ## 10 Example This example evaluates the confluent hypergeometric function at two points in scaled form using S22BBF, and subsequently calculates their product and ratio without having to explicitly construct M. ### 10.1 Program Text ``` Program s22bbfe ! S22BBF Example Program Text Mark 26 Release. NAG Copyright 2016. .. Use Statements .. Use nag_library, Only: nag_wp, s22bbf, x02bhf, x02blf ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nout = 6 .. Local Scalars .. ! :: ai, ar, bi, br, delta, frm, scale, x Real (Kind=nag_wp) :: ifail, k, scm Integer ``` Mark 26 S22BBF.5 S22BBF NAG Library Manual ``` .. Local Arrays .. Real (Kind=nag_wp) :: frmv(2) :: scmv(2) Integer .. Intrinsic Procedures .. Intrinsic :: real .. Executable Statements .. Write (nout,*) 'S22BBF Example Program Results' ai = -10.0_naq_wp bi = 30.0_nag_wp delta = 1.0E-4_nag_wp ar = delta br = -delta x = 25.0_nag_wp Write (nout,99999) 'a', 'b', 'x', 'frm', 'scm', 'M(a,b,x)' Do k = 1, 2 If (k==2) Then ar = -ar br = -br End If ifail = -1 Call s22bbf(ai,ar,bi,br,x,frm,scm,ifail) If (ifail==2 .Or. ifail>3) Then Either the result has overflowed, no accuracy may be assumed, 1 or an input error has been detected. Write (nout, 99996) ai + ar, bi + br, x, 'FAILED' Go To 100 Else If (scm<x02blf()) Then</pre> scale = frm*real(x02bhf(),kind=nag_wp)**scm Write (nout, 99998) ai + ar, bi + br, x, frm, scm, scale Write (nout, 99997) ai + ar, bi + br, x, frm, scm, 'Not representable' End If frmv(k) = frm scmv(k) = scm End Do Calculate the product M1*M2 frm = frmv(1)*frmv(2) scm = scmv(1) + scmv(2) Write (nout,*) If (scm<x02blf()) Then</pre> scale = frm*real(x02bhf(),kind=nag_wp)**scm Write (nout, 99995) 'Solution product', frm, scm, scale Else Write (nout,99994) 'Solution product', frm, scm, 'Not representable' End If Calculate the ratio M1/M2 If (frmv(2)/=0.0_nag_wp) Then frm = frmv(1)/frmv(2) scm = scmv(1) - scmv(2) Write (nout,*) If (scm<x02blf()) Then</pre> scale = frm*real(x02bhf(),kind=nag_wp)**scm Write (nout, 99995) 'Solution ratio', frm, scm, scale Write (nout,99994) 'Solution ratio', frm, scm, 'Not representable' End If End If 100 Continue 99999 Format (/,1X,3(A10,1X),A12,1X,A6,1X,A12) 99998 Format (1X,3(F10.4,1X),Es12.4,1X,I6,1X,Es12.4) ``` S22BBF.6 Mark 26 ``` 99997 Format (1X,3(F10.4,1X),Es12.4,1X,I6,1X,A17) 99996 Format (1X,3(F10.4,1X),20X,A17) 99995 Format (1X,A16,17X,Es12.4,1X,I6,1X,Es12.4) 99994 Format (1X,A16,17X,Es12.4,1X,I6,1X,A17) End Program s22bbfe ``` ## 10.2 Program Data None. # 10.3 Program Results S22BBF Example Program Results | a
-9.9999
-10.0001 | b
29.9999
30.0001 | | frm
-7.7329E-01
-7.7318E-01 | | M(a,b,x)
-2.3599E-05
-2.3596E-05 | |--------------------------|-------------------------|--|-----------------------------------|-----|--| | Solution product | | | 5.9789E-01 | -30 | 5.5683E-10 | | Solution ratio | | | 1.0001E+00 | 0 | 1.0001E+00 | Mark 26 S22BBF.7 (last)