# NAG Library Routine Document

## 1Purpose

f07faf (dposv) computes the solution to a real system of linear equations
 $AX=B ,$
where $A$ is an $n$ by $n$ symmetric positive definite matrix and $X$ and $B$ are $n$ by $r$ matrices.

## 2Specification

Fortran Interface
 Subroutine f07faf ( uplo, n, nrhs, a, lda, b, ldb, info)
 Integer, Intent (In) :: n, nrhs, lda, ldb Integer, Intent (Out) :: info Real (Kind=nag_wp), Intent (Inout) :: a(lda,*), b(ldb,*) Character (1), Intent (In) :: uplo
#include nagmk26.h
 void f07faf_ ( const char *uplo, const Integer *n, const Integer *nrhs, double a[], const Integer *lda, double b[], const Integer *ldb, Integer *info, const Charlen length_uplo)
The routine may be called by its LAPACK name dposv.

## 3Description

f07faf (dposv) uses the Cholesky decomposition to factor $A$ as $A={U}^{\mathrm{T}}U$ if ${\mathbf{uplo}}=\text{'U'}$ or $A=L{L}^{\mathrm{T}}$ if ${\mathbf{uplo}}=\text{'L'}$, where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix. The factored form of $A$ is then used to solve the system of equations $AX=B$.

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

1:     $\mathbf{uplo}$ – Character(1)Input
On entry: if ${\mathbf{uplo}}=\text{'U'}$, the upper triangle of $A$ is stored.
If ${\mathbf{uplo}}=\text{'L'}$, the lower triangle of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
2:     $\mathbf{n}$ – IntegerInput
On entry: $n$, the number of linear equations, i.e., the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
3:     $\mathbf{nrhs}$ – IntegerInput
On entry: $r$, the number of right-hand sides, i.e., the number of columns of the matrix $B$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
4:     $\mathbf{a}\left({\mathbf{lda}},*\right)$ – Real (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: the $n$ by $n$ symmetric matrix $A$.
• If ${\mathbf{uplo}}=\text{'U'}$, the upper triangular part of $A$ must be stored and the elements of the array below the diagonal are not referenced.
• If ${\mathbf{uplo}}=\text{'L'}$, the lower triangular part of $A$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: if ${\mathbf{info}}={\mathbf{0}}$, the factor $U$ or $L$ from the Cholesky factorization $A={U}^{\mathrm{T}}U$ or $A=L{L}^{\mathrm{T}}$.
5:     $\mathbf{lda}$ – IntegerInput
On entry: the first dimension of the array a as declared in the (sub)program from which f07faf (dposv) is called.
Constraint: ${\mathbf{lda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
6:     $\mathbf{b}\left({\mathbf{ldb}},*\right)$ – Real (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array b must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
On entry: the $n$ by $r$ right-hand side matrix $B$.
On exit: if ${\mathbf{info}}={\mathbf{0}}$, the $n$ by $r$ solution matrix $X$.
7:     $\mathbf{ldb}$ – IntegerInput
On entry: the first dimension of the array b as declared in the (sub)program from which f07faf (dposv) is called.
Constraint: ${\mathbf{ldb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
8:     $\mathbf{info}$ – IntegerOutput
On exit: ${\mathbf{info}}=0$ unless the routine detects an error (see Section 6).

## 6Error Indicators and Warnings

${\mathbf{info}}<0$
If ${\mathbf{info}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.
${\mathbf{info}}>0$
The leading minor of order $〈\mathit{\text{value}}〉$ of $A$ is not positive definite, so the factorization could not be completed, and the solution has not been computed.

## 7Accuracy

The computed solution for a single right-hand side, $\stackrel{^}{x}$, satisfies an equation of the form
 $A+E x^=b ,$
where
 $E1 = Oε A1$
and $\epsilon$ is the machine precision. An approximate error bound for the computed solution is given by
 $x^-x1 x1 ≤ κA E1 A1 ,$
where $\kappa \left(A\right)={‖{A}^{-1}‖}_{1}{‖A‖}_{1}$, the condition number of $A$ with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
f07fbf (dposvx) is a comprehensive LAPACK driver that returns forward and backward error bounds and an estimate of the condition number. Alternatively, f04bdf solves $Ax=b$ and returns a forward error bound and condition estimate. f04bdf calls f07faf (dposv) to solve the equations.

## 8Parallelism and Performance

f07faf (dposv) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f07faf (dposv) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is approximately $\frac{1}{3}{n}^{3}+2{n}^{2}r$, where $r$ is the number of right-hand sides.
The complex analogue of this routine is f07fnf (zposv).

## 10Example

This example solves the equations
 $Ax=b ,$
where $A$ is the symmetric positive definite matrix
 $A = 4.16 -3.12 0.56 -0.10 -3.12 5.03 -0.83 1.18 0.56 -0.83 0.76 0.34 -0.10 1.18 0.34 1.18 and b = 8.70 -13.35 1.89 -4.14 .$
Details of the Cholesky factorization of $A$ are also output.

### 10.1Program Text

Program Text (f07fafe.f90)

### 10.2Program Data

Program Data (f07fafe.d)

### 10.3Program Results

Program Results (f07fafe.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017