E04RYF Example Program Results Freshly created handle Overview Status: Problem and option settings are editable. No of variables: 2 Objective function: not defined yet Simple bounds: not defined yet Linear constraints: not defined yet Nonlinear constraints: not defined yet Matrix constraints: not defined yet Handle after definition of simple bounds and the objective Overview Status: Problem and option settings are editable. No of variables: 2 Objective function: linear Simple bounds: defined Linear constraints: not defined yet Nonlinear constraints: not defined yet Matrix constraints: not defined yet Objective function linear part c( 2) = 1.00E+00, Simple bounds 0.000E+00 <= X_ 1 -3.000E+00 <= X_ 2 <= 3.000E+00 Handle after definition of the 1st matrix constraint Overview Status: Problem and option settings are editable. No of variables: 2 Objective function: linear Simple bounds: defined Linear constraints: not defined yet Nonlinear constraints: not defined yet Matrix constraints: 1 Matrix constraints IDblk = 1, size = 3 x 3, linear Handle after partial definition of the 2nd matrix constraint Matrix constraints IDblk = 1, size = 3 x 3, linear IDblk = 2, size = 2 x 2, linear Handle with the complete problem formulation Overview Status: Problem and option settings are editable. No of variables: 2 Objective function: linear Simple bounds: defined Linear constraints: not defined yet Nonlinear constraints: not defined yet Matrix constraints: 2 Matrix constraints IDblk = 1, size = 3 x 3, linear IDblk = 2, size = 2 x 2, polynomial of order 2 Lagrangian multipliers sizes (Standard) multipliers U: 4 + 0 + 0 Matrix multipliers UA: 9 Matrix constraints (detailed) Matrix inequality IDBLK = 1, dimension 3 multiindex k = 0 A_k( 1, 1) = -1.000E+00 A_k( 2, 1) = 1.000E+00 A_k( 2, 2) = -7.500E-01 A_k( 3, 3) = -1.600E+01 multiindex k = 1 A_k( 2, 1) = 1.000E+00 multiindex k = 2 A_k( 3, 1) = 1.000E+00 Matrix inequality IDBLK = 2, dimension 2 multiindex k = 0 A_k( 2, 2) = -1.000E+00 multiindex k = 1 A_k( 1, 1) = 1.000E+00 multiindex k = 1, 2 Q_k( 2, 1) = -1.000E+00 Option settings Begin of Options Outer Iteration Limit = 100 * d Inner Iteration Limit = 100 * d Infinite Bound Size = 1.00000E+20 * d Initial X = Automatic * U Initial U = Automatic * d Initial P = Automatic * d Hessian Density = Auto * d Init Value P = 1.00000E+00 * d Init Value Pmat = 1.00000E+00 * d Presolve Block Detect = Yes * d Print File = 6 * d Print Level = 2 * d Print Options = No * U Print Solution = No * d Monitoring File = -1 * d Monitoring Level = 4 * d Monitor Frequency = 0 * d Stats Time = No * d P Min = 1.05367E-08 * d Pmat Min = 1.05367E-08 * d U Update Restriction = 5.00000E-01 * d Umat Update Restriction = 3.00000E-01 * d Preference = Speed * d Transform Constraints = Auto * d Dimacs Measures = Check * d Stop Criteria = Soft * d Stop Tolerance 1 = 1.00000E-06 * d Stop Tolerance 2 = 1.00000E-07 * d Stop Tolerance Feasibility = 1.00000E-07 * d Linesearch Mode = Auto * d Inner Stop Tolerance = 1.00000E-02 * d Inner Stop Criteria = Heuristic * d Task = Minimize * d P Update Speed = 12 * d Hessian Mode = Auto * d Verify Derivatives = No * d Time Limit = 1.00000E+06 * d Lpipm Centrality Correctors = 6 * d Lp Presolve = Yes * d Lpipm Scaling = Arithmetic * d Lpipm System Formulation = Auto * d Lpipm Algorithm = Primal-dual * d Lpipm Stop Tolerance = 1.05367E-08 * d Lpipm Monitor Frequency = 0 * d Lpipm Stop Tolerance 2 = 2.67452E-10 * d Lpipm Max Iterative Refinement= 5 * d Lpipm Iteration Limit = 100 * d Dfls Trust Region Tolerance = 1.24969E-06 * d Dfls Max Objective Calls = 500 * d Dfls Starting Trust Region = 1.00000E-01 * d Dfls Number Interp Points = 0 * d Dfls Monitor Frequency = 0 * d Dfls Print Frequency = 1 * d Dfls Small Residuals Tol = 1.08158E-12 * d Dfls Maximum Slow Steps = 20 * d Dfls Trust Region Slow Tol = 1.02648E-04 * d Dfls Trust Region Update = Fast * d Matrix Ordering = Auto * d End of Options E04SV, NLP-SDP Solver (Pennon) ------------------------------ Number of variables 2 [eliminated 0] simple linear nonlin (Standard) inequalities 3 0 0 (Standard) equalities 0 0 Matrix inequalities 1 1 [dense 2, sparse 0] [max dimension 3] -------------------------------------------------------------- it| objective | optim | feas | compl | pen min |inner -------------------------------------------------------------- 0 0.00000E+00 4.56E+00 1.23E-01 4.41E+01 1.00E+00 0 1 -3.01854E-01 1.21E-03 0.00E+00 1.89E+00 1.00E+00 7 2 -6.21230E-01 2.58E-03 0.00E+00 6.72E-01 4.65E-01 2 3 -2.11706E+00 4.31E-03 3.39E-02 6.07E-02 2.16E-01 5 4 -2.01852E+00 5.71E-03 6.05E-03 8.55E-03 1.01E-01 3 5 -2.00164E+00 3.36E-03 6.26E-04 1.02E-03 4.68E-02 2 6 -2.00022E+00 4.45E-03 8.37E-05 1.82E-04 2.18E-02 1 7 -2.00001E+00 4.73E-04 4.01E-06 3.96E-05 1.01E-02 1 8 -2.00000E+00 4.77E-06 2.25E-07 9.20E-06 4.71E-03 1 9 -2.00000E+00 4.52E-08 3.61E-08 2.14E-06 2.19E-03 1 10 -2.00000E+00 6.63E-09 3.19E-08 4.98E-07 1.02E-03 1 11 -2.00000E+00 8.80E-10 5.34E-09 1.16E-07 4.74E-04 1 12 -2.00000E+00 1.02E-10 5.41E-09 2.69E-08 2.21E-04 1 -------------------------------------------------------------- Status: converged, an optimal solution found -------------------------------------------------------------- Final objective value -2.000000E+00 Relative precision 9.839057E-10 Optimality 1.019125E-10 Feasibility 5.406175E-09 Complementarity 2.693704E-08 Iteration counts Outer iterations 12 Inner iterations 26 Linesearch steps 37 Evaluation counts Augm. Lagr. values 50 Augm. Lagr. gradient 39 Augm. Lagr. hessian 26 -------------------------------------------------------------- Problem solved Overview Status: Solver finished, only options can be changed. No of variables: 2 Objective function: linear Simple bounds: defined Linear constraints: not defined Nonlinear constraints: not defined Matrix constraints: 2 Final objective value = -2.00 Final X = 0.25 -2.00